a) Find and locate local extreme values off(x) = (x+ 1)^4−4x−2, (b) Then find the intervals of increase, decrease and concave upward, concavedownward and inflection points.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
icon
Concept explainers
Question

(a) Find and locate local extreme values off(x) = (x+ 1)^4−4x−2,

(b) Then find the intervals of increase, decrease and concave upward, concavedownward and inflection points.

Expert Solution
Step 1

Given,            f(x) = (x+1)4  4x  2

Step 2

Now,         f(x) = (x+1)4  4x  2Differentiating on both sides, we get f'(x) = d(x+1)4  4x  2dxf'(x) = d(x+1)4dx-d4xdx-d2dxf'(x) = 4(x+1)3dx + 1dx-4dxdx-0f'(x) = 4(x+1)31 + 0-4(1)-0f'(x) = 4(x+1)3 - 4Finding the critical points by equating f'(x)=0, we getf'(x) = 0 4(x+1)3 - 4 =0 (x+1)3 - 1 =0 (x+1)3 = 1 (x+1) = 113 (x+1) = 1 x = 0Sign and behaviour :

  -<x<0 x=0 0<x<
Sign - 0 +
Behavior Decreasing Minimum Increasing

From the table we have:Increasing interval = (0, )Decreasing interval = (-, 0)Point of minima is at x = 0.f(0) = 0+14 -4(0) - 2 = 1-0-2 =-1So, the local extreme value is -1 at x =0Graph of f(x) shown below with the local extreme values:

Advanced Math homework question answer, step 2, image 1

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Knowledge Booster
Application of Differentiation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,