A drop of water (n=1.33) in the shape of a hemisphere with radius 3.0 mm sits on smooth horizontal surface of a sapphire (n=1.77). A thin laser beam enters the droplet from air and reaches the water-sapphire boundary at the exact center of their circle of contact. At that point, laser beam is completely reflected off the surface of the sapphire. a. What is the maximum height above the sapphire that the laser beam could enter the droplet to be internally reflected at the center of the droplet as described above? b. What is the angle of incidence as the beam enters the droplet?
A drop of water (n=1.33) in the shape of a hemisphere with radius 3.0 mm sits on smooth horizontal surface of a sapphire (n=1.77). A thin laser beam enters the droplet from air and reaches the water-sapphire boundary at the exact center of their circle of contact. At that point, laser beam is completely reflected off the surface of the sapphire. a. What is the maximum height above the sapphire that the laser beam could enter the droplet to be internally reflected at the center of the droplet as described above? b. What is the angle of incidence as the beam enters the droplet?
Related questions
Question
A drop of water (n=1.33) in the shape of a hemisphere with radius 3.0 mm sits on smooth horizontal surface of a sapphire (n=1.77). A thin laser beam enters the droplet from air and reaches the water-sapphire boundary at the exact center of their circle of contact. At that point, laser beam is completely reflected off the surface of the sapphire.
a. What is the maximum height above the sapphire that the laser beam could enter the droplet to be internally reflected at the center of the droplet as described above?
b. What is the angle of incidence as the beam enters the droplet?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images