(a) Derive the equation of state, the entropy, and the internal energy of the gas.

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question

hello, any help would be appreciated

Please show all working.
Universal gas constant, R = 8.3145 J mol¬1 K-1
1. The Helmholtz function of a certain gas is given by
3
(V – nb)T
an?
F(T,V) = -nRT|1+ ln
пф
V
where n is the number of moles of gas, T is the temperatures of the gas, V is the volume of
the gas, and a, b, and o are constants.
(a) Derive the equation of state, the entropy, and the internal energy of the gas.
(b) Suppose that 100 moles of the gas expands from 2 m³ to 5 m³ at 280 K and that the
constants have the values a = 0.364 J m³ mol-2, b = 4.27 x 10-5 m³ mol-1, and
$ = 1.09 x 10-5 m³ K³/2 mol-1. Calculate:
( i) ΔU.
(ii) the maximum energy that can be made available for work due to the process.
(iii) the speed of sound in the gas after the expansion if the ratio of specific heat
capacities for the gas is y = 1.28 and the density of the gas is 0.881 kg m-3 in the
final state.
(c) Using the free energy of a monatomic ideal gas, derive the ideal gas law.
Transcribed Image Text:Please show all working. Universal gas constant, R = 8.3145 J mol¬1 K-1 1. The Helmholtz function of a certain gas is given by 3 (V – nb)T an? F(T,V) = -nRT|1+ ln пф V where n is the number of moles of gas, T is the temperatures of the gas, V is the volume of the gas, and a, b, and o are constants. (a) Derive the equation of state, the entropy, and the internal energy of the gas. (b) Suppose that 100 moles of the gas expands from 2 m³ to 5 m³ at 280 K and that the constants have the values a = 0.364 J m³ mol-2, b = 4.27 x 10-5 m³ mol-1, and $ = 1.09 x 10-5 m³ K³/2 mol-1. Calculate: ( i) ΔU. (ii) the maximum energy that can be made available for work due to the process. (iii) the speed of sound in the gas after the expansion if the ratio of specific heat capacities for the gas is y = 1.28 and the density of the gas is 0.881 kg m-3 in the final state. (c) Using the free energy of a monatomic ideal gas, derive the ideal gas law.
Expert Solution
steps

Step by step

Solved in 6 steps

Blurred answer
Knowledge Booster
Design and specifications
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The