A cylinder contains oxygen at a pressure of 2.00 atm. The volume is 4.00 L, and the temperature is 300 K. Assume that the oxygen may be treated as an ideal gas. The oxygen is carried through the following processes: (i) Heated at constant pressure from the initial state (state 1) to state 2, which has T = 450 K. (ii) Cooled at constant volume to 250 K (state 3). (iii) Compressed at constant temperature to a volume of 4.00 L (state 4). (iv) Heated at constant volume to 300 K, which takes the system back to state 1. (a) Show these four processes in a pV-diagram, giving the numerical values of p and V in each of the four states. (b) Calculate Q and W for each of the four processes. (c) Calculate the net work done by the oxygen in the complete cycle. (d) What is the efficiency of this device as a heat engine? How does this compare to the efficiency of a Carnot-cycle engine operating between the same minimum and maximum temperatures of 250 K and 450 K?

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question

A cylinder contains oxygen at a pressure of 2.00 atm.
The volume is 4.00 L, and the temperature is 300 K. Assume that the
oxygen may be treated as an ideal gas. The oxygen is carried through
the following processes:
(i) Heated at constant pressure from the initial state (state 1) to state 2,
which has T = 450 K.
(ii) Cooled at constant volume to 250 K (state 3).
(iii) Compressed at constant temperature to a volume of 4.00 L (state 4).
(iv) Heated at constant volume to 300 K, which takes the system back
to state 1.
(a) Show these four processes in a pV-diagram, giving the numerical values
of p and V in each of the four states. (b) Calculate Q and W for each of the
four processes. (c) Calculate the net work done by the oxygen in the complete
cycle. (d) What is the efficiency of this device as a heat engine? How
does this compare to the efficiency of a Carnot-cycle engine operating between
the same minimum and maximum temperatures of 250 K and 450 K?

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Work and Heat
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY