A cyclotron designed to accelerate protons has an outer radius of 0.45 m. The protons are emitted nearly at rest from a source at the center and are accelerated through 700 V each time they cross the gap between the 'dees'. The dees are between the poles of an electromagnet where the field is 0.69 T. a. Find the speed at which protons exit the cyclotron (proton mass = 1.67×10-27). b. Find the cyclotron frequency f for the protons in this cyclotron (Hint: v=r.(2)). c. Calculate the maximum kinetic energy of the proton?
A cyclotron designed to accelerate protons has an outer radius of 0.45 m. The protons are emitted nearly at rest from a source at the center and are accelerated through 700 V each time they cross the gap between the 'dees'. The dees are between the poles of an electromagnet where the field is 0.69 T. a. Find the speed at which protons exit the cyclotron (proton mass = 1.67×10-27). b. Find the cyclotron frequency f for the protons in this cyclotron (Hint: v=r.(2)). c. Calculate the maximum kinetic energy of the proton?
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 8 images