A cyclic machine, shown in Fig. P5.56, receives 300 kJ from a 1000-K energy reservoir. It rejects 120 kJ to a 400-K energy reservoir, and the cycle produces 180 kJ of work as output. Is this cycle reversible, irreversible, or impossible? TH= 1000 K ☺ Cyclic machine Qu= 300 kJ गु. T₁ = 400 K Figure P5.56 W = 180 kJ Q₁ = 120 kJ Consider the previous problem and assume the temperatures and heat input are as given. If the actual machine has an efficiency that is half that of the corresponding Carnot cycle, find the work out and the rejected heat transfer.
A cyclic machine, shown in Fig. P5.56, receives 300 kJ from a 1000-K energy reservoir. It rejects 120 kJ to a 400-K energy reservoir, and the cycle produces 180 kJ of work as output. Is this cycle reversible, irreversible, or impossible? TH= 1000 K ☺ Cyclic machine Qu= 300 kJ गु. T₁ = 400 K Figure P5.56 W = 180 kJ Q₁ = 120 kJ Consider the previous problem and assume the temperatures and heat input are as given. If the actual machine has an efficiency that is half that of the corresponding Carnot cycle, find the work out and the rejected heat transfer.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
Need help solving this problem. Please provide clear and concise steps in neat handwriting.

Transcribed Image Text:A cyclic machine, shown in Fig. P5.56, receives
300 kJ from a 1000-K energy reservoir. It rejects
120 kJ to a 400-K energy reservoir, and the cycle
produces 180 kJ of work as output. Is this cycle Fi
reversible, irreversible, or impossible?
TH = 1000 K
Qn = 300 kJ
Cyclic
machine
W= 180 kJ
QL = 120 kJ
T = 400 K
Figure P5.56
Consider the previous problem and assume the
temperatures and heat input are as given. If the
actual machine has an efficiency that is half that
of the corresponding Carnot cycle, find the work
out and the rejected heat transfer.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY