A cube, whose mass is 0.720 kg, is attached to a spring with a force constant of 110 N/m. The cube rests upon a frictionless, horizontal surface (shown in the figure below). A cube labeled m is attached to the right end of a horizontal spring, and the left end of the spring is attached to a wall. The spring is stretched horizontally such that the cube is displaced by a distance A to the right of its equilibrium position. The cube is pulled to the right a distance A = 0.140 m from its equilibrium position (the vertical dashed line) and held motionless. The cube is then released from rest. (a) At the instant of release, what is the magnitude of the spring force (in N) acting upon the cube?

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter6: Energy Of A System
Section: Chapter Questions
Problem 61P: An inclined plane of angle = 20.0 has a spring of force constant k = 500 N/m fastened securely at...
icon
Related questions
Question
A cube, whose mass is 0.720 kg, is attached to a spring with a force constant of 110 N/m. The cube rests upon a frictionless, horizontal surface (shown in the figure below).
A cube labeled m is attached to the right end of a horizontal spring, and the left end of the spring is attached to a wall. The spring is stretched horizontally such that the cube is displaced by a distance A to the right of its equilibrium position.
The cube is pulled to the right a distance A = 0.140 m from its equilibrium position (the vertical dashed line) and held motionless. The cube is then released from rest.
(a)
At the instant of release, what is the magnitude of the spring force (in N) acting upon the cube?
 N
(b)
At that very instant, what is the magnitude of the cube's acceleration (in m/s2)?
 m/s2
(c)
In what direction does the acceleration vector point at the instant of release?
 Away from the equilibrium position (i.e., to the right in the figure). Toward the equilibrium position (i.e., to the left in the figure).      The direction is not defined (i.e., the acceleration is zero). You cannot tell without more information.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Torque
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Physics for Scientists and Engineers with Modern …
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning