a) Consider a process involving an ideal diatomic where 3 mol, following p = aV, a = 1 x 10° Pa/m³ is a constant. The gas ex- pands from volume V; = 1 m³ to Vf = 4m³. P2 gas with n = Find the |B (i) work done on the gas. (ii) heat entering the gas. 1 (iii) change in the internal energy of the gas. 2 b) Now consider the cycle depicted in the figure, involving the same amount of gas as in the previous part. A → B is the process described in the previous subtask, B → C an isochor and C → A an isobar. Additionally, V2/Vị = n = 4 and V = 1 m³. Find the A C P1 3 i) work done by the gas during one loop of the cycle. Vị V2 V
a) Consider a process involving an ideal diatomic where 3 mol, following p = aV, a = 1 x 10° Pa/m³ is a constant. The gas ex- pands from volume V; = 1 m³ to Vf = 4m³. P2 gas with n = Find the |B (i) work done on the gas. (ii) heat entering the gas. 1 (iii) change in the internal energy of the gas. 2 b) Now consider the cycle depicted in the figure, involving the same amount of gas as in the previous part. A → B is the process described in the previous subtask, B → C an isochor and C → A an isobar. Additionally, V2/Vị = n = 4 and V = 1 m³. Find the A C P1 3 i) work done by the gas during one loop of the cycle. Vị V2 V
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
Please solve part b : 1,2,3
![Р2.
a) Consider a process involving an ideal diatomic
3 mol, following p = aV,
where
gas with n =
a = 1 × 10° Pa/m³ is a constant. The gas ex-
pands from volume V; = 1m³ to Vf = 4m³.
Find the
%3D
P2
В
(i) work done on the gas.
(ii) heat entering the
gas.
1
(iii) change in the internal energy of the gas.
b) Now consider the cycle depicted in the figure,
involving the same amount of gas as in the
previous part. A → B is the process described
in the previous subtask, B → C an isochor and
C → A an isobar. Additionally, V2/V1 = n = 4
and V = 1 m3. Find the
A
C
Pi
3
i) work done by the gas during one loop of
the cycle.
Vị
V2
V
ii) thermal efficiency of the cycle.
iii) maximum theoretical efficiency of a Car-
not cycle having the same temperature
extrema as in this cycle.
iv) coefficient of performance of the cycle, if
it were used as a refrigerator .](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F09266112-1b21-48dc-bf44-247db9ff43c8%2F6805b266-6a62-41b0-a444-4ea4d7f9e8d7%2Fi5q0af_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Р2.
a) Consider a process involving an ideal diatomic
3 mol, following p = aV,
where
gas with n =
a = 1 × 10° Pa/m³ is a constant. The gas ex-
pands from volume V; = 1m³ to Vf = 4m³.
Find the
%3D
P2
В
(i) work done on the gas.
(ii) heat entering the
gas.
1
(iii) change in the internal energy of the gas.
b) Now consider the cycle depicted in the figure,
involving the same amount of gas as in the
previous part. A → B is the process described
in the previous subtask, B → C an isochor and
C → A an isobar. Additionally, V2/V1 = n = 4
and V = 1 m3. Find the
A
C
Pi
3
i) work done by the gas during one loop of
the cycle.
Vị
V2
V
ii) thermal efficiency of the cycle.
iii) maximum theoretical efficiency of a Car-
not cycle having the same temperature
extrema as in this cycle.
iv) coefficient of performance of the cycle, if
it were used as a refrigerator .
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY