a conite tutior 1420 iS 222 Groups 51. Le Th 37. Let H= {z E C* I Izl 1}. Prove that C*/H is isomorphic to R, of positive real numbers under multiplication. 38. Let a be a homomorphism from G, to H, and B be a homomor- phism from G2 to H,. Determine the kernel of the homomorphism from G, G2 to H, H, defined by y(g1, 82) = (a(gj), B(82) 39. Prove that the mapping xxo from C* to C* is a homomorphism. Н. the group 52. S 53. U What is the kernel? 40. For each pair of positive integers m and n, we can define a homo- morphism from Z to Z Z, by x- (x mod m, x mod n). What is the kernel when (m, n) = (3, 4)? What is the kernel when (m, n) = 54. т 55 (6, 4)? Generalize. 41. (Second Isomorphism Theorem) If K is a subgroup of G and Ni a normal subgroup of G, prove that K/(K N) is isomorphic to KNIN. 56 42. (Third Isomorphism Theorem) If M and N are normal subgroups of G and N M, prove that (GIN)/(M/N) G/M. 43. Let (d) denote the Euler phi function of d (see page 85). Show that the number of homomorphisms from Z,, to Z is 2p(d), where k the sum runs over all common divisors d of n and k. JIt follows from number theory that this sum is actually gcd(n, k).] 44. Let k be a divisor of n. Consider the homomorphism from U(n) to U(k) given by x>x mod k. What is the relationship between this homomorphism and the subgroup U,(n) of U(n)? 45. Determine all homomorphic images of D4 (up to isomorphism). 46. Let N be a normal subgroup of a finite group G. Use the theorems of this chapter to prove that the order of the group element gN in GIN divides the order of g. 47. Suppose that G is a finite group and that Z10 image of G. What can we say about IGI? Generalize. 48. Suppose that Z and Z, are both homomorphic images of a finite group G. What can be said about IGl? Generalize. 49. Suppose that for each prime p, Z, is the homomorphic image of is a homomorphic 10 15 р group G. What can we say about IGI? Give an example of such a group. 50. (For students who have had linear algebra.) Suppose that x S a particular solution to a system of linear equations and that S is the entire solution set of the corresponding homogeneous system o linear equations. Explain why property 6 of Theorem 10.1 guaran- tees that x + S is the entire solution set of the nonhomogeneous system. In particular, describe the relevant groups and the homo- morphism between them. X
a conite tutior 1420 iS 222 Groups 51. Le Th 37. Let H= {z E C* I Izl 1}. Prove that C*/H is isomorphic to R, of positive real numbers under multiplication. 38. Let a be a homomorphism from G, to H, and B be a homomor- phism from G2 to H,. Determine the kernel of the homomorphism from G, G2 to H, H, defined by y(g1, 82) = (a(gj), B(82) 39. Prove that the mapping xxo from C* to C* is a homomorphism. Н. the group 52. S 53. U What is the kernel? 40. For each pair of positive integers m and n, we can define a homo- morphism from Z to Z Z, by x- (x mod m, x mod n). What is the kernel when (m, n) = (3, 4)? What is the kernel when (m, n) = 54. т 55 (6, 4)? Generalize. 41. (Second Isomorphism Theorem) If K is a subgroup of G and Ni a normal subgroup of G, prove that K/(K N) is isomorphic to KNIN. 56 42. (Third Isomorphism Theorem) If M and N are normal subgroups of G and N M, prove that (GIN)/(M/N) G/M. 43. Let (d) denote the Euler phi function of d (see page 85). Show that the number of homomorphisms from Z,, to Z is 2p(d), where k the sum runs over all common divisors d of n and k. JIt follows from number theory that this sum is actually gcd(n, k).] 44. Let k be a divisor of n. Consider the homomorphism from U(n) to U(k) given by x>x mod k. What is the relationship between this homomorphism and the subgroup U,(n) of U(n)? 45. Determine all homomorphic images of D4 (up to isomorphism). 46. Let N be a normal subgroup of a finite group G. Use the theorems of this chapter to prove that the order of the group element gN in GIN divides the order of g. 47. Suppose that G is a finite group and that Z10 image of G. What can we say about IGI? Generalize. 48. Suppose that Z and Z, are both homomorphic images of a finite group G. What can be said about IGl? Generalize. 49. Suppose that for each prime p, Z, is the homomorphic image of is a homomorphic 10 15 р group G. What can we say about IGI? Give an example of such a group. 50. (For students who have had linear algebra.) Suppose that x S a particular solution to a system of linear equations and that S is the entire solution set of the corresponding homogeneous system o linear equations. Explain why property 6 of Theorem 10.1 guaran- tees that x + S is the entire solution set of the nonhomogeneous system. In particular, describe the relevant groups and the homo- morphism between them. X
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Concept explainers
Contingency Table
A contingency table can be defined as the visual representation of the relationship between two or more categorical variables that can be evaluated and registered. It is a categorical version of the scatterplot, which is used to investigate the linear relationship between two variables. A contingency table is indeed a type of frequency distribution table that displays two variables at the same time.
Binomial Distribution
Binomial is an algebraic expression of the sum or the difference of two terms. Before knowing about binomial distribution, we must know about the binomial theorem.
Topic Video
Question
46
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,