a conite tutior 1420 iS 222 Groups 51. Le Th 37. Let H= {z E C* I Izl 1}. Prove that C*/H is isomorphic to R, of positive real numbers under multiplication. 38. Let a be a homomorphism from G, to H, and B be a homomor- phism from G2 to H,. Determine the kernel of the homomorphism from G, G2 to H, H, defined by y(g1, 82) = (a(gj), B(82) 39. Prove that the mapping xxo from C* to C* is a homomorphism. Н. the group 52. S 53. U What is the kernel? 40. For each pair of positive integers m and n, we can define a homo- morphism from Z to Z Z, by x- (x mod m, x mod n). What is the kernel when (m, n) = (3, 4)? What is the kernel when (m, n) = 54. т 55 (6, 4)? Generalize. 41. (Second Isomorphism Theorem) If K is a subgroup of G and Ni a normal subgroup of G, prove that K/(K N) is isomorphic to KNIN. 56 42. (Third Isomorphism Theorem) If M and N are normal subgroups of G and N M, prove that (GIN)/(M/N) G/M. 43. Let (d) denote the Euler phi function of d (see page 85). Show that the number of homomorphisms from Z,, to Z is 2p(d), where k the sum runs over all common divisors d of n and k. JIt follows from number theory that this sum is actually gcd(n, k).] 44. Let k be a divisor of n. Consider the homomorphism from U(n) to U(k) given by x>x mod k. What is the relationship between this homomorphism and the subgroup U,(n) of U(n)? 45. Determine all homomorphic images of D4 (up to isomorphism). 46. Let N be a normal subgroup of a finite group G. Use the theorems of this chapter to prove that the order of the group element gN in GIN divides the order of g. 47. Suppose that G is a finite group and that Z10 image of G. What can we say about IGI? Generalize. 48. Suppose that Z and Z, are both homomorphic images of a finite group G. What can be said about IGl? Generalize. 49. Suppose that for each prime p, Z, is the homomorphic image of is a homomorphic 10 15 р group G. What can we say about IGI? Give an example of such a group. 50. (For students who have had linear algebra.) Suppose that x S a particular solution to a system of linear equations and that S is the entire solution set of the corresponding homogeneous system o linear equations. Explain why property 6 of Theorem 10.1 guaran- tees that x + S is the entire solution set of the nonhomogeneous system. In particular, describe the relevant groups and the homo- morphism between them. X
Angles in Circles
Angles within a circle are feasible to create with the help of different properties of the circle such as radii, tangents, and chords. The radius is the distance from the center of the circle to the circumference of the circle. A tangent is a line made perpendicular to the radius through its endpoint placed on the circle as well as the line drawn at right angles to a tangent across the point of contact when the circle passes through the center of the circle. The chord is a line segment with its endpoints on the circle. A secant line or secant is the infinite extension of the chord.
Arcs in Circles
A circular arc is the arc of a circle formed by two distinct points. It is a section or segment of the circumference of a circle. A straight line passing through the center connecting the two distinct ends of the arc is termed a semi-circular arc.
42
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 6 images