A computer repair firm believes that its average repair time is less than two weeks. Using the data in the Excel file Computer Repair Times, determine if the company can continue to support this claim. Computer Repair Times Sample Repair Time (Days) 1 18 2 15 3 17 4 9 5 37 6 15 7 8 8 29 9 10 10 14 11 17 12 12 13 13 14 12 15 11 16 14 17 13 18 16 19 13 20 15 21 16 22 12 23 34 24 29 25 13 26 19 27 12 28 15 29 16 30 14 31 15 32 7 33 40 34 16 35 11 36 11 37 10 38 13 39 14 40 9 41 18 42 8 43 13 44 8 45 10 46 13 47 16 48 9 49 9 50 12 51 16 52 9 53 15 54 17 55 38 56 11 57 15 58 16 59 10 60 9 61 25 62 15 63 7 64 11 65 19 66 13 67 12 68 20 69 12 70 13 71 11 72 8 73 14 74 10 75 12 76 15 77 17 78 10 79 13 80 18 81 26 82 14 83 15 84 12 85 15 86 9 87 10 88 21 89 11 90 36 91 8 92 20 93 14 94 18 95 19 96 14 97 12 98 16 99 17 100 12 101 10 102 10 103 15 104 23 105 13 106 19 107 19 108 12 109 13 110 12 111 16 112 12 113 14 114 11 115 14 116 7 117 16 118 12 119 16 120 10 121 12 122 36 123 9 124 9 125 22 126 16 127 12 128 17 129 9 130 25 131 14 132 13 133 13 134 8 135 14 136 8 137 17 138 13 139 12 140 8 141 12 142 17 143 22 144 19 145 10 146 19 147 10 148 17 149 13 150 9 151 13 152 9 153 11 154 12 155 17 156 15 157 15 158 27 159 17 160 10 161 20 162 15 163 12 164 15 165 23 166 17 167 8 168 17 169 10 170 20 171 16 172 12 173 11 174 22 175 11 176 14 177 17 178 18 179 11 180 21 181 15 182 14 183 16 184 10 185 19 186 14 187 20 188 27 189 20 190 15 191 20 192 11 193 14 194 13 195 26 196 9 197 8 198 15 199 16 200 21 201 14 202 15 203 15 204 14 205 15 206 15 207 16 208 5 209 11 210 14 211 8 212 21 213 10 214 18 215 13 216 16 217 11 218 11 219 10 220 18 221 11 222 18 223 23 224 22 225 19 226 9 227 11 228 10 229 6 230 39 231 14 232 10 233 11 234 7 235 13 236 17 237 8 238 25 239 20 240 13 241 21 242 7 243 12 244 16 245 23 246 18 247 31 248 6 249 17 250 13
Inverse Normal Distribution
The method used for finding the corresponding z-critical value in a normal distribution using the known probability is said to be an inverse normal distribution. The inverse normal distribution is a continuous probability distribution with a family of two parameters.
Mean, Median, Mode
It is a descriptive summary of a data set. It can be defined by using some of the measures. The central tendencies do not provide information regarding individual data from the dataset. However, they give a summary of the data set. The central tendency or measure of central tendency is a central or typical value for a probability distribution.
Z-Scores
A z-score is a unit of measurement used in statistics to describe the position of a raw score in terms of its distance from the mean, measured with reference to standard deviation from the mean. Z-scores are useful in statistics because they allow comparison between two scores that belong to different normal distributions.
A computer repair firm believes that its average repair time is less than two weeks. Using the data in the Excel file Computer Repair Times, determine if the company can continue to support this claim.
Computer Repair Times | |
Sample | Repair Time (Days) |
1 | 18 |
2 | 15 |
3 | 17 |
4 | 9 |
5 | 37 |
6 | 15 |
7 | 8 |
8 | 29 |
9 | 10 |
10 | 14 |
11 | 17 |
12 | 12 |
13 | 13 |
14 | 12 |
15 | 11 |
16 | 14 |
17 | 13 |
18 | 16 |
19 | 13 |
20 | 15 |
21 | 16 |
22 | 12 |
23 | 34 |
24 | 29 |
25 | 13 |
26 | 19 |
27 | 12 |
28 | 15 |
29 | 16 |
30 | 14 |
31 | 15 |
32 | 7 |
33 | 40 |
34 | 16 |
35 | 11 |
36 | 11 |
37 | 10 |
38 | 13 |
39 | 14 |
40 | 9 |
41 | 18 |
42 | 8 |
43 | 13 |
44 | 8 |
45 | 10 |
46 | 13 |
47 | 16 |
48 | 9 |
49 | 9 |
50 | 12 |
51 | 16 |
52 | 9 |
53 | 15 |
54 | 17 |
55 | 38 |
56 | 11 |
57 | 15 |
58 | 16 |
59 | 10 |
60 | 9 |
61 | 25 |
62 | 15 |
63 | 7 |
64 | 11 |
65 | 19 |
66 | 13 |
67 | 12 |
68 | 20 |
69 | 12 |
70 | 13 |
71 | 11 |
72 | 8 |
73 | 14 |
74 | 10 |
75 | 12 |
76 | 15 |
77 | 17 |
78 | 10 |
79 | 13 |
80 | 18 |
81 | 26 |
82 | 14 |
83 | 15 |
84 | 12 |
85 | 15 |
86 | 9 |
87 | 10 |
88 | 21 |
89 | 11 |
90 | 36 |
91 | 8 |
92 | 20 |
93 | 14 |
94 | 18 |
95 | 19 |
96 | 14 |
97 | 12 |
98 | 16 |
99 | 17 |
100 | 12 |
101 | 10 |
102 | 10 |
103 | 15 |
104 | 23 |
105 | 13 |
106 | 19 |
107 | 19 |
108 | 12 |
109 | 13 |
110 | 12 |
111 | 16 |
112 | 12 |
113 | 14 |
114 | 11 |
115 | 14 |
116 | 7 |
117 | 16 |
118 | 12 |
119 | 16 |
120 | 10 |
121 | 12 |
122 | 36 |
123 | 9 |
124 | 9 |
125 | 22 |
126 | 16 |
127 | 12 |
128 | 17 |
129 | 9 |
130 | 25 |
131 | 14 |
132 | 13 |
133 | 13 |
134 | 8 |
135 | 14 |
136 | 8 |
137 | 17 |
138 | 13 |
139 | 12 |
140 | 8 |
141 | 12 |
142 | 17 |
143 | 22 |
144 | 19 |
145 | 10 |
146 | 19 |
147 | 10 |
148 | 17 |
149 | 13 |
150 | 9 |
151 | 13 |
152 | 9 |
153 | 11 |
154 | 12 |
155 | 17 |
156 | 15 |
157 | 15 |
158 | 27 |
159 | 17 |
160 | 10 |
161 | 20 |
162 | 15 |
163 | 12 |
164 | 15 |
165 | 23 |
166 | 17 |
167 | 8 |
168 | 17 |
169 | 10 |
170 | 20 |
171 | 16 |
172 | 12 |
173 | 11 |
174 | 22 |
175 | 11 |
176 | 14 |
177 | 17 |
178 | 18 |
179 | 11 |
180 | 21 |
181 | 15 |
182 | 14 |
183 | 16 |
184 | 10 |
185 | 19 |
186 | 14 |
187 | 20 |
188 | 27 |
189 | 20 |
190 | 15 |
191 | 20 |
192 | 11 |
193 | 14 |
194 | 13 |
195 | 26 |
196 | 9 |
197 | 8 |
198 | 15 |
199 | 16 |
200 | 21 |
201 | 14 |
202 | 15 |
203 | 15 |
204 | 14 |
205 | 15 |
206 | 15 |
207 | 16 |
208 | 5 |
209 | 11 |
210 | 14 |
211 | 8 |
212 | 21 |
213 | 10 |
214 | 18 |
215 | 13 |
216 | 16 |
217 | 11 |
218 | 11 |
219 | 10 |
220 | 18 |
221 | 11 |
222 | 18 |
223 | 23 |
224 | 22 |
225 | 19 |
226 | 9 |
227 | 11 |
228 | 10 |
229 | 6 |
230 | 39 |
231 | 14 |
232 | 10 |
233 | 11 |
234 | 7 |
235 | 13 |
236 | 17 |
237 | 8 |
238 | 25 |
239 | 20 |
240 | 13 |
241 | 21 |
242 | 7 |
243 | 12 |
244 | 16 |
245 | 23 |
246 | 18 |
247 | 31 |
248 | 6 |
249 | 17 |
250 | 13 |
Trending now
This is a popular solution!
Step by step
Solved in 2 steps