a) Compute the area of the surface z=4−(x^2)−(y^2) in upper half space {z≥0}. b) If F = (x)i + ((y^2)z + y)j − (2(y^3)z)k. Find S∫F·nˆdσ where S is the portion of z=4−x −y in the upper half space {z≥0} and nˆ is the normal in positive z-direction. c) If S1 is the upper half sphere {x^2 + y^2 + z^2 = 4,z ≥ 0} and S2 is the lower half sphere. Show that for any smooth vector field G, S1∫(∇×G)·n1ˆ dσ + S2∫(∇×G)·n2ˆ dσ = 0 (n1ˆ is the normal pointing in positive z-direction (up) and n2ˆ is the normal pointing negative z-direction (down))

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
icon
Concept explainers
Question

a) Compute the area of the surface z=4−(x^2)−(y^2) in upper half space {z≥0}.

b) If F = (x)i + ((y^2)z + y)j − (2(y^3)z)k. Find S∫F·nˆdσ where S is the portion of z=4−x −y in the upper half space {z≥0} and nˆ is the normal in positive z-direction.

c) If S1 is the upper half sphere {x^2 + y^2 + z^2 = 4,z ≥ 0} and S2 is the lower half sphere. Show that for any smooth vector field G, S1∫(∇×G)·n1ˆ dσ + S2∫(∇×G)·n2ˆ dσ = 0

(n1ˆ is the normal pointing in positive z-direction (up) and n2ˆ is the normal pointing negative z-direction (down))

Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Application of Integration
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,