A company wants to set a code on each product that they sell in the market. The code must contain 3 letters and two digits. The first letter must be a vowel, the second and third can be any letter. Among the two digits, the last digit must not be 0. How many different codes are possible?

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
b) | A company wants to set a code on each product that they sell in the market. The | [2]
code must contain 3 letters and two digits. The first letter must be a vowel, the
second and third can be any letter. Among the two digits, the last digit must not be
0. How many different codes are possible?
Transcribed Image Text:b) | A company wants to set a code on each product that they sell in the market. The | [2] code must contain 3 letters and two digits. The first letter must be a vowel, the second and third can be any letter. Among the two digits, the last digit must not be 0. How many different codes are possible?
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,