A company sells square carpets for $7 per square foot. It has a simplified manufacturing process for which all the carpets each week must be the same size, and the length must be a multiple of a half foot. It has found that it can sell 200 carpets in a week when the carpets are 2 ft by 2 ft, which is the minimum size. Beyond this, for each additional foot of length and width, the number sold goes down by 3. a. Write the equation for the revenue, R, the company will earn as a function of the length, x, of the carpet squares sold. b. What size carpets should the company sell to maximize its weekly revenue? c. What is the maximum weekly revenue?
A company sells square carpets for $7 per square foot. It has a simplified manufacturing process for which all the carpets each week must be the same size, and the length must be a multiple of a half foot. It has found that it can sell 200 carpets in a week when the carpets are 2 ft by 2 ft, which is the minimum size. Beyond this, for each additional foot of length and width, the number sold goes down by 3. a. Write the equation for the revenue, R, the company will earn as a function of the length, x, of the carpet squares sold. b. What size carpets should the company sell to maximize its weekly revenue? c. What is the maximum weekly revenue?
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
please explain step by step and use python code if u can thankk u
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,