A company manufactures three products namely X, Y and Z. Each of the product require processing on three machines, Turning, Milling and Grinding. Product X requires 10 hours of turning, 5 hours of milling and 1 hour of grinding. Product Y requires 5 hours of turning, 10 hours of milling and 1 hour of grinding, and Product Z requires 2 hours of turning, 4 hours of milling and 2 hours of grinding. In the coming planning period, 2700 hours of turning, 2200 hours of milling and 500 hours of grinding are available. The profit contribution of X, Y and Z are GH¢ 10, GH¢ 15 and GH¢ 20 per unit respectively. Find the optimal product mix to maximize the profit. Formulate a linear programming model for this problem. Use solver to find optimal solution and sensitivity report.
A company manufactures three products namely X, Y and Z. Each of the product require processing on three machines, Turning, Milling and Grinding. Product X requires 10 hours of turning, 5 hours of milling and 1 hour of grinding. Product Y requires 5 hours of turning, 10 hours of milling and 1 hour of grinding, and Product Z requires 2 hours of turning, 4 hours of milling and 2 hours of grinding. In the coming planning period, 2700 hours of turning, 2200 hours of milling and 500 hours of grinding are available. The profit contribution of X, Y and Z are GH¢ 10, GH¢ 15 and GH¢ 20 per unit respectively. Find the optimal product mix to maximize the profit. Formulate a linear programming model for this problem. Use solver to find optimal solution and sensitivity report.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
A company manufactures three products namely X, Y and Z. Each of the product require processing on three machines, Turning, Milling and Grinding. Product X requires 10 hours of turning, 5 hours of milling and 1 hour of grinding. Product Y requires 5 hours of turning, 10 hours of milling and 1 hour of grinding, and Product Z requires 2 hours of turning, 4 hours of milling and 2 hours of grinding. In the coming planning period, 2700 hours of turning, 2200 hours of milling and 500 hours of grinding are available. The profit contribution of X, Y and Z are GH¢ 10, GH¢ 15 and GH¢ 20 per unit respectively. Find the optimal product mix to maximize the profit.
- Formulate a linear programming model for this problem.
- Use solver to find optimal solution and sensitivity report.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,