A cogeneration system works with a water cycle and a refrigerant (ammonia) cycle combined. Superheated water vapor enters turbine 1 (efficiency of 85%) at a flow rate of 5 kg/sec, 50 bar and 500oC and expands to 1.5 bar. Half of the flow is extracted for industrial heating and the rest enters a heat exchanger. The condensate leaves the heat exchanger as saturated liquid at 1 bar and combines with the return flow from the industrial process, which comes back at 60oC and 1 bar. The combined flow is pumped (efficiency of 85%) to the boiler pressure. The refrigerant cycle is an ideal Rankine cycle. The ammonia enters turbine 2 at a pressure of 14 bar and a temperature of 100oC and leaves the condenser at 3 bar. Calculate: a) The amount of heat required by the boiler, in kW. b) The net power output of the cogeneration system, in kW. c) The heat transfer provided to the industrial process

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question

A cogeneration system works with a water cycle and a refrigerant (ammonia) cycle combined. Superheated water vapor enters turbine 1 (efficiency of 85%) at a flow rate of 5 kg/sec, 50 bar and 500oC and expands to 1.5 bar. Half of the flow is extracted for industrial heating and the rest enters a heat exchanger. The condensate leaves the heat exchanger as saturated liquid at 1 bar and combines with the return flow from the industrial process, which comes back at 60oC and 1 bar. The combined flow is pumped (efficiency of 85%) to the boiler pressure. The refrigerant cycle is an ideal Rankine cycle. The ammonia enters turbine 2 at a pressure of 14 bar and a temperature of 100oC and leaves the condenser at 3 bar. Calculate:

a) The amount of heat required by the boiler, in kW. b) The net power output of the cogeneration system, in kW. c) The heat transfer provided to the industrial process

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 6 steps with 11 images

Blurred answer
Knowledge Booster
Power Plant Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY