A circle with centre (-2, 4) passes through the point A(n, 1). Given that the tangent o the circle at A has a gradient of 3, find the value of n. n = A circle has the equation x² + y² + 6ax - 7y - 2 = 0, where a is a constant. Find the centre and radius of the circle in terms of a. Centre = ( ), Radius=
A circle with centre (-2, 4) passes through the point A(n, 1). Given that the tangent o the circle at A has a gradient of 3, find the value of n. n = A circle has the equation x² + y² + 6ax - 7y - 2 = 0, where a is a constant. Find the centre and radius of the circle in terms of a. Centre = ( ), Radius=
Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
Related questions
Question

Transcribed Image Text:11:31 Fri 10 Mar
<
x
Untitled Notebook (2)
po
a)
n =
a =
Given f(x) = e2x
a)
Maths Tutorial
Untitled Notebook (3)
c)
Given the point (3,-1) lies on the circle, find the value of a.
-
A circle with centre (−2, 4) passes through the point A(n, 1). Given that the tangent
to the circle at A has a gradient of , find the value of n.
●●●
b)
A circle has the equation x² + y² + 6ax − 7y - ³ = 0, where a is a constant.
-
Find the centre and radius of the circle in terms of a.
Centre = (
), Radius =
Determine the range of f(x).
f(x) >
X =
4, x € R, g(x) =
X
T
b)
Find an expression for the inverse function f-¹(x).
f-¹(x) =
V
Mastering Chemistry
O**
C)
Solve the equation g(f(x)) = 1 for x and give your answer in terms of In(2).
of the A, B and M
3=(
1
x-11, x = R₁ x ‡ 11.
ER,
#
x
k is a constant, to inimum point at Mar
of the points M and
Y=(
Untitled Notebook (3)
²-6x+16,x ef
f(x) = (x + a)²+b.
24% 0
1 for x and give y
ion for the inverse fun
age of f(x).

Transcribed Image Text:11:33 Fri 10 Mar
<
x
Untitled Notebook (2)
Po
For a quadratic function f(x) = x² − 6x + 16, x € R
M = (
y
CD
A(2,0)
M (3,-6)
y = f(x)
Untitled Notebook (3)
Maths Tutorial
a)
Express f(x) in the form of ƒ(x) = (x + a)² + b, where a and b are constants.
f(x)=
B (10,0)
b)
The graph of f(x) has a minimum point at M and meets the y-axis at Y.
Write down the coordinates of the points M and Y.
), Y= (
> x
●●●
)
c)
The graph of f(x) + k, where k is a constant, touches the x-axis. Find the value
of k.
k =
x
T
The curve crosses the x axis at A(2, 0) and at the point B(10, 0). The curve has a
minimum at M(3, −6).
), B = (
V
Mastering Chemistry
XO
), M=(
a)
Write down the co-ordinate of A, B and M under the tranformation y = ƒ(2x).
A= (
), B = (
), M = (
b)
Write down the co-ordinates of the A, B and M under the transformation
y = -2f(x) + 3.
A = (
3
)
)
of the A, B and M
B=(
X
Untitled Notebook (3)
k is a constant, to inimum point at Mar
of the points M and
Y=(
x²-6x+16, xel
23% 0
f(x) = (x + a)²+b.w
1 for x and give y
ion for the inverse fune
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images

Recommended textbooks for you

Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON

Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning

Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON

Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning

Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON

Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press

College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education