A circle is inside a square. The radius of the circle is decreasing at a rate of 3 meters per hour and the sides of the square are increasing at a rate of 2 meters per hour. When the radius is 2 meters, and the sides are 19 meters, then how fast is the AREA outside the circle but inside the square changing? The rate of change of the area enclosed between the circle and the square is square meters per hour.
A circle is inside a square. The radius of the circle is decreasing at a rate of 3 meters per hour and the sides of the square are increasing at a rate of 2 meters per hour. When the radius is 2 meters, and the sides are 19 meters, then how fast is the AREA outside the circle but inside the square changing? The rate of change of the area enclosed between the circle and the square is square meters per hour.
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![**Problem:**
A circle is inside a square.
The radius of the circle is decreasing at a rate of 3 meters per hour and the sides of the square are increasing at a rate of 2 meters per hour.
When the radius is 2 meters, and the sides are 19 meters, then how fast is the area outside the circle but inside the square changing?
The rate of change of the area enclosed between the circle and the square is [ ] square meters per hour.
**Options:**
- Add Work
- Check Answer
**Explanation:**
To solve this problem, consider the following steps:
1. **Calculate the area of the square and the circle:**
- The area of the square is given by the square of its side length, \( A_{\text{square}} = s^2 \).
- The area of the circle is given by \( A_{\text{circle}} = \pi r^2 \).
2. **Determine the rate of change of the areas:**
- Differentiate the area of the square with respect to time to find the rate of change of the square’s area.
- Differentiate the area of the circle with respect to time to find the rate of change of the circle’s area.
3. **Find the rate of change of the area between the circle and the square:**
- The rate of change of the area between the circle and the square is the difference between the rate of change of the square and the circle areas.
Use these principles along with the given rates and dimensions to solve the problem.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F3ef879d6-d05a-4de3-b7a5-e661a4d5bec1%2F24e38013-1483-4dc5-b121-4c5b777fffae%2F7taivem_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Problem:**
A circle is inside a square.
The radius of the circle is decreasing at a rate of 3 meters per hour and the sides of the square are increasing at a rate of 2 meters per hour.
When the radius is 2 meters, and the sides are 19 meters, then how fast is the area outside the circle but inside the square changing?
The rate of change of the area enclosed between the circle and the square is [ ] square meters per hour.
**Options:**
- Add Work
- Check Answer
**Explanation:**
To solve this problem, consider the following steps:
1. **Calculate the area of the square and the circle:**
- The area of the square is given by the square of its side length, \( A_{\text{square}} = s^2 \).
- The area of the circle is given by \( A_{\text{circle}} = \pi r^2 \).
2. **Determine the rate of change of the areas:**
- Differentiate the area of the square with respect to time to find the rate of change of the square’s area.
- Differentiate the area of the circle with respect to time to find the rate of change of the circle’s area.
3. **Find the rate of change of the area between the circle and the square:**
- The rate of change of the area between the circle and the square is the difference between the rate of change of the square and the circle areas.
Use these principles along with the given rates and dimensions to solve the problem.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images

Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning