A chemist heats the block of copper, then places the metal sample in a cup of oil at 25.00 C instead of a cup of water. The tempeature of the oil increases to 25.93 C. Calculate the mass of oil in the cup. The specific heat of copper is 0.387 J/g. C and the specific heat of oil is 1.74 J/g. C. The mass of copper is 17.920 g. Final temperature of copper when heated is 53.99.
Thermochemistry
Thermochemistry can be considered as a branch of thermodynamics that deals with the connections between warmth, work, and various types of energy, formed because of different synthetic and actual cycles. Thermochemistry describes the energy changes that occur as a result of reactions or chemical changes in a substance.
Exergonic Reaction
The term exergonic is derived from the Greek word in which ‘ergon’ means work and exergonic means ‘work outside’. Exergonic reactions releases work energy. Exergonic reactions are different from exothermic reactions, the one that releases only heat energy during the course of the reaction. So, exothermic reaction is one type of exergonic reaction. Exergonic reaction releases work energy in different forms like heat, light or sound. For example, a glow stick releases light making that an exergonic reaction and not an exothermic reaction since no heat is released. Even endothermic reactions at very high temperature are exergonic.
A chemist heats the block of copper, then places the metal sample in a cup of oil at 25.00 C instead of a cup of water. The tempeature of the oil increases to 25.93 C. Calculate the mass of oil in the cup. The specific heat of copper is 0.387 J/g. C and the specific heat of oil is 1.74 J/g. C. The mass of copper is 17.920 g. Final temperature of copper when heated is 53.99.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps