A certain virus infects one in every 400 people. A test used to detect the virus in a person is positive 85% of the time if the person has the virus and 8% of the time if the person does not have the virus. (This 8% result is called a false positive.) Let A be the event "the person is infected" and B be the event "the person tests positive". a) Find the probability that a person has the virus given that they have tested positive, i.e. find P(A|B). Round your answer to the nearest tenth of a percent and do not include a percent sign. P(A|B)= b) Find the probability that a person does not have the virus given that they test negative, i.e. find P(A'|B'). Round your answer to the nearest tenth of a percent and do not include a percent sign. P(A'|B') = %3D
A certain virus infects one in every 400 people. A test used to detect the virus in a person is positive 85% of the time if the person has the virus and 8% of the time if the person does not have the virus. (This 8% result is called a false positive.) Let A be the event "the person is infected" and B be the event "the person tests positive". a) Find the probability that a person has the virus given that they have tested positive, i.e. find P(A|B). Round your answer to the nearest tenth of a percent and do not include a percent sign. P(A|B)= b) Find the probability that a person does not have the virus given that they test negative, i.e. find P(A'|B'). Round your answer to the nearest tenth of a percent and do not include a percent sign. P(A'|B') = %3D
A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
Related questions
Topic Video
Question

Transcribed Image Text:A certain virus infects one in every 400 people. A test used to detect the virus in a person is positive 85% of
the time if the person has the virus and 8% of the time if the person does not have the virus. (This 8% result
is called a false positive.) Let A be the event "the person is infected" and B be the event "the person tests
positive".
a) Find the probability that a person has the virus given that they have tested positive, i.e. find P(A|B).
Round your answer to the nearest tenth of a percent and do not include a percent sign.
P(A|B)=
b) Find the probability that a person does not have the virus given that they test negative, i.e. find
P(A'|B'). Round your answer to the nearest tenth of a percent and do not include a percent sign.
P(A'|B') =
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.Recommended textbooks for you

A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON


A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
