A certain sprinter has a top speed of 11.0 m/s. If the sprinter starts from rest and accelerates at a constant rate, he is able to reach his top speed in a distance of 12.0 m. He is then able to maintain this top speed for the remainder of a 100 m race. (a) What is his time for the 100 m race? (b) In order to improve his time, the sprinter tries to decrease the distance required for him to reach his top speed.What must this distance be if he is to achieve a time of 10.0 s for the race?
Displacement, Velocity and Acceleration
In classical mechanics, kinematics deals with the motion of a particle. It deals only with the position, velocity, acceleration, and displacement of a particle. It has no concern about the source of motion.
Linear Displacement
The term "displacement" refers to when something shifts away from its original "location," and "linear" refers to a straight line. As a result, “Linear Displacement” can be described as the movement of an object in a straight line along a single axis, for example, from side to side or up and down. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Linear displacement is usually measured in millimeters or inches and may be positive or negative.
A certain sprinter has a top speed of 11.0 m/s. If the sprinter
starts from rest and accelerates at a constant rate, he is able to
reach his top speed in a distance of 12.0 m. He is then able to maintain
this top speed for the remainder of a 100 m race. (a) What is
his time for the 100 m race? (b) In order to improve his time, the
sprinter tries to decrease the distance required for him to reach his top speed.What must this distance be if he is to achieve a time of
10.0 s for the race?
Trending now
This is a popular solution!
Step by step
Solved in 10 steps with 16 images