A car is traveling at 22.0 m/s when the driver suddenly applies the brakes, giving the car a constant deceleration. The car comes to a stop in a distance of 120.0 m. How fast was the car moving when it was 30.0 m past the point where the brakes were applied?
Displacement, Velocity and Acceleration
In classical mechanics, kinematics deals with the motion of a particle. It deals only with the position, velocity, acceleration, and displacement of a particle. It has no concern about the source of motion.
Linear Displacement
The term "displacement" refers to when something shifts away from its original "location," and "linear" refers to a straight line. As a result, “Linear Displacement” can be described as the movement of an object in a straight line along a single axis, for example, from side to side or up and down. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Linear displacement is usually measured in millimeters or inches and may be positive or negative.
A car is traveling at 22.0 m/s when the driver suddenly applies the brakes, giving the car a constant deceleration. The car comes to a stop in a distance of 120.0 m. How fast was the car moving when it was 30.0 m past the point where the brakes were applied?
- The initial speed of the car is u=22 m/s
- The total distance traveled by car is
Calculating the acceleration or deceleration of the car as follows:
Here, v is the final velocity of the car when the brake applied.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps