A car does 17000 km/year. One litre of fuel has mass 0.84 kg. Due to inertia when starting, kinetic energy required to reach a fixed speed and rolling resistance, all increasing with increased mass, 0.4 L/100 km of exrta fuel are used for every extra 100 kg of mass. If the fuel is 86% carbon, and this is entirely oxidised to form CO2 during combustion, how much extra CO2 is emitted per year if the car is driven with an average of 35 L of fuel rather than an average of 15 L? Atomic masses of C and O are 12 and 16 respectively. O a. 30 kg O b. 39.kg Oc. 144 kg O d.33 kg O e. 11 kg

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
A car does 17000 km/year. One litre of fuel has mass 0.84 kg. Due to inertia when starting, kinetic energy required to reach a fixed speed and rolling
resistance, all increasing with increased mass, 0.4 L/100 km of exrta fuel are used for every extra 100 kg of mass. If the fuel is 86% carbon, and this is
entirely oxidised to form CO2 during combustion, how much extra CO2 is emitted per year if the car is driven with an average of 35 L of fuel rather than
an average of 15 L? Atomic masses of C and O are 12 and 16 respectively.
O a. 30 kg
O b. 39.kg
O c. 144 kg
O d. 33 kg
O e. 11 kg
Transcribed Image Text:A car does 17000 km/year. One litre of fuel has mass 0.84 kg. Due to inertia when starting, kinetic energy required to reach a fixed speed and rolling resistance, all increasing with increased mass, 0.4 L/100 km of exrta fuel are used for every extra 100 kg of mass. If the fuel is 86% carbon, and this is entirely oxidised to form CO2 during combustion, how much extra CO2 is emitted per year if the car is driven with an average of 35 L of fuel rather than an average of 15 L? Atomic masses of C and O are 12 and 16 respectively. O a. 30 kg O b. 39.kg O c. 144 kg O d. 33 kg O e. 11 kg
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Ising model of Ferromagnets
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON