A bus moves along an x-axis a distance of 800 m, starting at rest (at x = 0) and ending at rest (at x = 800 m). Through the first 2 of that distance, its acceleration is +2.15 m/s?. Through the rest of the distance, its acceleration is -0.92 m/s?. Calculate a) time taken to cover the first half of the distance? b) the bus's maximum speed? c) total time to cover 800 m distance? Sketch velocity time graphs.
Displacement, Velocity and Acceleration
In classical mechanics, kinematics deals with the motion of a particle. It deals only with the position, velocity, acceleration, and displacement of a particle. It has no concern about the source of motion.
Linear Displacement
The term "displacement" refers to when something shifts away from its original "location," and "linear" refers to a straight line. As a result, “Linear Displacement” can be described as the movement of an object in a straight line along a single axis, for example, from side to side or up and down. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Linear displacement is usually measured in millimeters or inches and may be positive or negative.
A bus moves along an x-axis a distance of 800 m, starting at rest (at x = 0) and ending at rest (at x = 800 m). Through the first 2 of that distance, its acceleration is +2.15 m/s?. Through the rest of the distance, its acceleration is -0.92 m/s?. Calculate a) time taken to cover the first half of the distance? b) the bus's maximum speed? c) total time to cover 800 m distance? Sketch velocity time graphs.
Step by step
Solved in 3 steps with 1 images