A brand of toothpaste is made using a mixture of white and red paste. During the manufacturing process, both pastes are pumped through a pipe, with the red paste lying in the centre of the pipe, as shown in Figure Q2. The pipe has an internal radius, R₂, and the segment of red paste has a radius R₁. The flow is found to follow the Poiseuille equation, i.e. 1 dp 4µ dx u(r) = -- (R2-r²) dx Where u is the viscosity of the paste and μ is the pressure gradient. The total flow of toothpaste through the pipe is Qtot, and the flowrate of the red paste is Qred. The toothpaste has a density of p = 1200 kg/m³, and a viscosity of 0.03 Pa.s. The pipe has a radius R₂ = 5 cm and a length L = 2 m. a) Find an expression for the flowrate of the red toothpaste. You answer should be in terms of µ, R₁, R₂, d) dp

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
Question 2
A brand of toothpaste is made using a mixture of white and red paste. During the
manufacturing process, both pastes are pumped through a pipe, with the red paste lying in
the centre of the pipe, as shown in Figure Q2. The pipe has an internal radius, R₂, and the
segment of red paste has a radius R₁. The flow is found to follow the Poiseuille equation,
i.e.
u(r) =
1 dp
4µ dx
(R₂-²)
dp
Where u is the viscosity of the paste and is the pressure gradient. The total flow of
toothpaste through the pipe is Qtot, and the flowrate of the red paste is Qred-
dx
The toothpaste has a density of p = 1200 kg/m³, and a viscosity of 0.03 Pa.s. The pipe
has a radius R₂ = 5 cm and a length L = 2 m.
a) Find an expression for the flowrate of the red toothpaste. You answer should be in
terms of µ, R₁, R₂, d)
dx
Transcribed Image Text:Question 2 A brand of toothpaste is made using a mixture of white and red paste. During the manufacturing process, both pastes are pumped through a pipe, with the red paste lying in the centre of the pipe, as shown in Figure Q2. The pipe has an internal radius, R₂, and the segment of red paste has a radius R₁. The flow is found to follow the Poiseuille equation, i.e. u(r) = 1 dp 4µ dx (R₂-²) dp Where u is the viscosity of the paste and is the pressure gradient. The total flow of toothpaste through the pipe is Qtot, and the flowrate of the red paste is Qred- dx The toothpaste has a density of p = 1200 kg/m³, and a viscosity of 0.03 Pa.s. The pipe has a radius R₂ = 5 cm and a length L = 2 m. a) Find an expression for the flowrate of the red toothpaste. You answer should be in terms of µ, R₁, R₂, d) dx
Expert Solution
steps

Step by step

Solved in 5 steps with 7 images

Blurred answer
Knowledge Booster
Compressible Flow
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY