A block of mass m = 5.00 kg slides down a ramp with a constant speed v = 3.00 m/s. The ramp is 1.500 m long and 0.500 m high. How much thermal energy, in joules, was generated as the box slid down from the top to the bottom of the ramp at constant speed? Enter the numerical answer without units. Your answer must be within 1% of the exact answer to receive credit. 1.50 m m= 5.00 kg v = 3.00 m/s = constant %3D 0.50 m

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question

Explain why 24.5 is the correct answer

### Problem Description

A block of mass \( m = 5.00 \, \text{kg} \) slides down a ramp with a constant speed \( v = 3.00 \, \text{m/s} \). The ramp is \( 1.500 \, \text{m} \) long and \( 0.500 \, \text{m} \) high. How much thermal energy, in joules, was generated as the box slid down from the top to the bottom of the ramp at constant speed? Enter the numerical answer without units. Your answer must be within 1% of the exact answer to receive credit.

### Diagram Explanation

The diagram shows:

- A ramp inclined at an angle with the horizontal ground.
- The ramp is labeled with a length of \( 1.50 \, \text{m} \) and a height of \( 0.50 \, \text{m} \).
- At the top of the ramp, there is a block labeled \( m = 5.00 \, \text{kg} \).
- An arrow along the ramp illustrates the direction of motion with a velocity labeled \( v = 3.00 \, \text{m/s} \, = \) constant.
- The block is shown sliding down the ramp.

### Answer Box

A numerical box is provided with an entry of "24." Below, it is noted that the exact answer is "24.5 (with margin: 0.025)."

The focus is on determining the thermal energy generated due to the block sliding down the ramp at constant speed. This would involve calculating the gravitational potential energy loss and interpreting it as thermal energy since kinetic energy remains constant.
Transcribed Image Text:### Problem Description A block of mass \( m = 5.00 \, \text{kg} \) slides down a ramp with a constant speed \( v = 3.00 \, \text{m/s} \). The ramp is \( 1.500 \, \text{m} \) long and \( 0.500 \, \text{m} \) high. How much thermal energy, in joules, was generated as the box slid down from the top to the bottom of the ramp at constant speed? Enter the numerical answer without units. Your answer must be within 1% of the exact answer to receive credit. ### Diagram Explanation The diagram shows: - A ramp inclined at an angle with the horizontal ground. - The ramp is labeled with a length of \( 1.50 \, \text{m} \) and a height of \( 0.50 \, \text{m} \). - At the top of the ramp, there is a block labeled \( m = 5.00 \, \text{kg} \). - An arrow along the ramp illustrates the direction of motion with a velocity labeled \( v = 3.00 \, \text{m/s} \, = \) constant. - The block is shown sliding down the ramp. ### Answer Box A numerical box is provided with an entry of "24." Below, it is noted that the exact answer is "24.5 (with margin: 0.025)." The focus is on determining the thermal energy generated due to the block sliding down the ramp at constant speed. This would involve calculating the gravitational potential energy loss and interpreting it as thermal energy since kinetic energy remains constant.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Space-time
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON