A beam of light with wavelength 440 nm in air hits a thin piece of glass 10.28 microns thick (with refractive index 1.55) at an angle of 40.8 degrees to the normal. What is the path difference between the two reflections from the layers of the glass, in wavelengths? [Note to get the phase shift we multiply this number by 2π, but this is modulo 2π, i.e. any integer number of wavelengths are 2π phase shifts, equivalent to no phase shift... basically in terms of phase we only really need the non-integer part of your answer. Note also that for the phase shift we would need to add a π for the reflection off the glass-air interface.]
A beam of light with wavelength 440 nm in air hits a thin piece of glass 10.28 microns thick (with refractive index 1.55) at an angle of 40.8 degrees to the normal. What is the path difference between the two reflections from the layers of the glass, in wavelengths? [Note to get the phase shift we multiply this number by 2π, but this is modulo 2π, i.e. any integer number of wavelengths are 2π phase shifts, equivalent to no phase shift... basically in terms of phase we only really need the non-integer part of your answer. Note also that for the phase shift we would need to add a π for the reflection off the glass-air interface.]
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
A beam of light with wavelength 440 nm in air hits a thin piece of glass 10.28 microns thick (with refractive index 1.55) at an angle of 40.8 degrees to the normal. What is the path difference between the two reflections from the layers of the glass, in wavelengths? [Note to get the phase shift we multiply this number by 2π, but this is modulo 2π, i.e. any integer number of wavelengths are 2π phase shifts, equivalent to no phase shift... basically in terms of phase we only really need the non-integer part of your answer. Note also that for the phase shift we would need to add a π for the reflection off the glass-air interface.]
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON