A beam is loaded and supported as shown in the following diagram. A) Determine all support reactions.
We have been solving problems like these by dividing the whole system into the primary structures and original loads on one diagram and another with the redundants. The steps are 1- Classify structure -- the degree 2- Draw the primary with original loads and the primary with redundants 3- Superposition -- determine deltaB1 and deltaB2 4- Compatibility (where the other picture shows different cases) 5- Finidng the equilibrium forces and such.
I have started this problem but I want to confirm my thought process is right, you may ignore part C
![Problem 11.2
A beam is loaded and supported as shown in the following diagram.
A) Determine all support reactions.
B) Draw shear and moment diagrams for the beam neatly and to scale
C) Confirm the result of your hand calculations with Visual Analysis, submitting appropriate
documentation to demonstrate that the results match.
You may use tabulated beam deflection equations in your analysis.
A
E. I
5 ft
B
5 ft
2 kip](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F76aaab3c-5a4a-4ff8-814d-d2e8a1f30217%2F84ed594a-9114-4889-b47b-0bcc326d8d70%2Fhw4fqwr_processed.png&w=3840&q=75)
![Beam Deflections and Slopes
↑
L
Loading
Mo
Mo
W
v+
Vmax=
at x = L
Vmax=
at x = L
Vmax=
at x = L
"max =
PL³
3EI
MOL²
2EI
PL'
Umax
48 EI
at x = L/2
at x =>
77
w24
8EI
L
11/22
Sw. LA
384EI
MoL²
9V/3E1
0+
at x = L
+5
8max==
at x = L
OL-
8-
at x = L
PL2
2EI
PL²
16EI
at x = 0 or x=L
MOL
EI
OL =
OR =
wL³
6EI
Pab(L+ a)
6LEI
0x = ±
Pab(L + b)
6LEI
BL=
wL³
24E1
3wL3
128EI
7wL³
384E1
MOL
6E1
MOL
3EI
3.16
V=
Equation +
= 6/21 (2²-36x²)
VE
V=
W
24EI
Mo
2E1
(-4L+6L²x²)
P
V= (4.x² - 3L²x).
48EI
0≤x≤ L/2
Pbx
6LEI
0≤x≤a
WX
24E1
wL
384E1
L/2 ≤x≤L
(2²-6²-x²)
:(x²³ - 2Lx² + L³)
WX (16³-24L+9L³)
384 EI
0≤x≤ L/2
(8³-24L² + 17L²x - L')
Mox
6EIL (1²-2²)
Source: Hibbeler (2009)
ENGR 323-Mechanics i](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F76aaab3c-5a4a-4ff8-814d-d2e8a1f30217%2F84ed594a-9114-4889-b47b-0bcc326d8d70%2Fcp6eyvt_processed.jpeg&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
For a given beam determine the support reactions and moment.
Determine weather the beam is determinate or indeterminate.
Assume redundant force/moment
Determine a compatibility equation.
Solve for the compatibility equation to determine the value of redundant force/moment.
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![Structural Analysis](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9781337630931/9781337630931_smallCoverImage.jpg)
![Structural Analysis (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134610672/9780134610672_smallCoverImage.gif)
![Principles of Foundation Engineering (MindTap Cou…](https://www.bartleby.com/isbn_cover_images/9781337705028/9781337705028_smallCoverImage.gif)
![Structural Analysis](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9781337630931/9781337630931_smallCoverImage.jpg)
![Structural Analysis (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134610672/9780134610672_smallCoverImage.gif)
![Principles of Foundation Engineering (MindTap Cou…](https://www.bartleby.com/isbn_cover_images/9781337705028/9781337705028_smallCoverImage.gif)
![Fundamentals of Structural Analysis](https://www.bartleby.com/isbn_cover_images/9780073398006/9780073398006_smallCoverImage.gif)
![Sustainable Energy](https://www.bartleby.com/isbn_cover_images/9781337551663/9781337551663_smallCoverImage.gif)
![Traffic and Highway Engineering](https://www.bartleby.com/isbn_cover_images/9781305156241/9781305156241_smallCoverImage.jpg)