A beam (ABC) has a pin support at the left-hand edge (point A) and is supported by a thinner beam (CD). Beam ABC is loaded with a linearly increasing distributed load between point A and point/B. The intensity of the distributed load is zero at point A and equal to at point B. A concentrated moment, Mc, is applied to beam ABC at point C. As the connection at point C is considered pinned, there is no transfer of bending moments between beam ABC and beam CD. Beam CD is pinned at one end (Point D) and connected to beam ABC via a pin (point C). There is a concentrated load, P, applied to beam CD a shown below. Wo B D P = woL ↑ L/2 Mc = woL² L- -L/2→→→ Figure 1: Two beam arrangement for question 1. In order to analyse this structure, you will: a) Construct the free body diagrams for the structure shown above. When constructing your FBD's you must make section cuts at point B and point C. You can represent the structure as three separate beams. Following this, construct the axial force, bending moment and shear force diagrams for each beam. Do not substitute in values for wo, Letc. Clearly label all of the key features of the shear force and bending moment diagrams (include features such as maximum values of axial force, shear force and bending moment and the locations where the values change from positive to negative).

Structural Analysis
6th Edition
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:KASSIMALI, Aslam.
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
100%
A beam (ABC) has a pin support at the left-hand edge (point A) and is supported by a thinner beam
(CD). Beam ABC is loaded with a linearly increasing distributed load between point A and point B.
The intensity of the distributed load is zero at point A and equal to at point B. A concentrated
moment, Mc, is applied to beam ABC at point C. As the connection at point C is considered pinned,
there is no transfer of bending moments between beam ABC and beam CD. Beam CD is pinned at
one end (Point D) and connected to beam ABC via a pin (point C). There is a concentrated load, P,
applied to beam CD a shown below.
A
Wo
TD
P = woL
↑
B
-L/2
Figure 1: Two beam arrangement for question 1.
L/2
Mc = woL²
In order to analyse this structure, you will:
a) Construct the free body diagrams for the structure shown above. When constructing your
FBD's you must make section cuts at point B and point C. You can represent the structure as
three separate beams. Following this, construct the axial force, bending moment and shear
force diagrams for each beam. Do not substitute in values for wo, Letc. Clearly label all of the
key features of the shear force and bending moment diagrams (include features such as
maximum values of axial force, shear force and bending moment and the locations where
the values change from positive to negative).
Transcribed Image Text:A beam (ABC) has a pin support at the left-hand edge (point A) and is supported by a thinner beam (CD). Beam ABC is loaded with a linearly increasing distributed load between point A and point B. The intensity of the distributed load is zero at point A and equal to at point B. A concentrated moment, Mc, is applied to beam ABC at point C. As the connection at point C is considered pinned, there is no transfer of bending moments between beam ABC and beam CD. Beam CD is pinned at one end (Point D) and connected to beam ABC via a pin (point C). There is a concentrated load, P, applied to beam CD a shown below. A Wo TD P = woL ↑ B -L/2 Figure 1: Two beam arrangement for question 1. L/2 Mc = woL² In order to analyse this structure, you will: a) Construct the free body diagrams for the structure shown above. When constructing your FBD's you must make section cuts at point B and point C. You can represent the structure as three separate beams. Following this, construct the axial force, bending moment and shear force diagrams for each beam. Do not substitute in values for wo, Letc. Clearly label all of the key features of the shear force and bending moment diagrams (include features such as maximum values of axial force, shear force and bending moment and the locations where the values change from positive to negative).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 7 steps with 15 images

Blurred answer
Knowledge Booster
System of forces
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Structural Analysis
Structural Analysis
Civil Engineering
ISBN:
9781337630931
Author:
KASSIMALI, Aslam.
Publisher:
Cengage,
Structural Analysis (10th Edition)
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Fundamentals of Structural Analysis
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
Sustainable Energy
Sustainable Energy
Civil Engineering
ISBN:
9781337551663
Author:
DUNLAP, Richard A.
Publisher:
Cengage,
Traffic and Highway Engineering
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning