A bar ABC of length L consists of two parts of equal lengths but different diameters. Segment AB has a diameter d 1 = 100 mm and segment BC has a diameter d 2 = 60 mm. Both segments have a length L / 2 = 0.6 m. A longitudinal hole of diameter d is drilled through segment AB in the middle of its length (distance L / 4 = 0.3 m). The bar is made of plastic with a modulus of elasticity. E = 4.0 GPa. Compressive loads P = 110 kN act at the ends of the bar. (a) If the shortening of the bar is limited to 8.0 mm, what is the maximum allowable diameter d max of the hole? (See figure part a.) (b) Now, if d max is set to d 2/2, at what distance b from the end C must the load P be applied to limit the shortening of the bar to 8.0 mm? (See Figure part b.) (C) Finally, if the loads P are applied at the ends and d max = d 2/2, what is the allowable length x of the hole if shortening is limited to 8.0 mm? (See figure part c.)
A bar ABC of length L consists of two parts of equal lengths but different diameters. Segment AB has a diameter d 1 = 100 mm and segment BC has a diameter d 2 = 60 mm. Both segments have a length L / 2 = 0.6 m. A longitudinal hole of diameter d is drilled through segment AB in the middle of its length (distance L / 4 = 0.3 m). The bar is made of plastic with a modulus of elasticity. E = 4.0 GPa. Compressive loads P = 110 kN act at the ends of the bar. (a) If the shortening of the bar is limited to 8.0 mm, what is the maximum allowable diameter d max of the hole? (See figure part a.) (b) Now, if d max is set to d 2/2, at what distance b from the end C must the load P be applied to limit the shortening of the bar to 8.0 mm? (See Figure part b.) (C) Finally, if the loads P are applied at the ends and d max = d 2/2, what is the allowable length x of the hole if shortening is limited to 8.0 mm? (See figure part c.)
![dmax
B
dz
P
P
2
(c)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F56d293b1-7a8d-4c4b-b1f3-c1ccabb631c7%2Fab47f604-5386-4692-b1ab-9afa8b20f516%2Fgkacbg_processed.png&w=3840&q=75)
![dmax
B
dz
C
P
P
titil
(а)
d2
dmax =
B
dz
P
P
b
titil
(b)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F56d293b1-7a8d-4c4b-b1f3-c1ccabb631c7%2Fab47f604-5386-4692-b1ab-9afa8b20f516%2F5a1dtos_processed.png&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 5 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)