A [[ B]. D M = where A E Rkxk is nonsingular. a) Verify that the following "block LU decomposition" formula holds: M = I A - [CA-+ i] [4 [CA-₁ в BA-'B]. D-CA-¹B The matrix D-CA-¹B is called the Schur complement of A and is the matrix we get after B eliminating the first block of unknowns x₁ in the system via the formula C D X₂ x₁ = A-¹(b₁ - Bx2); plugging this formula into the second block row of the equation yields: b₂ = Cx₁ + Dx2 = CA¯¹(b₁ – Bx2) + Dx2 (D- - CA¹B)x2 = b₂ - CA-¹b₁. b) Describe how you can construct the full LU decomposition of M by computing an LU decomposition of A, evaluating and factorizing D - CA-¹B, and finally manipulating the result using efficient operations (and never explicitly constructing A-¹)!

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

we have a matrix M ∈ R ^n×n decomposed into blocks:

Given the matrix \( M = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \), where \( A \in \mathbb{R}^{k \times k} \) is nonsingular, we proceed with the following problems:

**a) Verify the "block LU decomposition" formula:**

The block LU decomposition is given by:

\[
M = \begin{bmatrix} I & 0 \\ CA^{-1} & I \end{bmatrix} \begin{bmatrix} A & B \\ 0 & D - CA^{-1}B \end{bmatrix}.
\]

The matrix \( D - CA^{-1}B \) is referred to as the **Schur complement** of \( A \) and is obtained after eliminating the first block of unknowns \( \mathbf{x}_1 \) in the system:

\[
\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \end{bmatrix}
\]

The solution for \( \mathbf{x}_1 \) is:

\[
\mathbf{x}_1 = A^{-1}(\mathbf{b}_1 - B\mathbf{x}_2);
\]

Substituting this into the second block of the equation yields:

\[
\mathbf{b}_2 = C\mathbf{x}_1 + D\mathbf{x}_2 = CA^{-1}(\mathbf{b}_1 - B\mathbf{x}_2) + D\mathbf{x}_2 \implies (D - CA^{-1}B)\mathbf{x}_2 = \mathbf{b}_2 - CA^{-1}\mathbf{b}_1.
\]

**b) Construct the full LU decomposition of \( M \):**

Compute an LU decomposition of \( A \), then evaluate and factorize \( D - CA^{-1}B \). Finally, manipulate the result using efficient operations **without explicitly constructing \( A^{-1} \)**. 

This approach ensures computational efficiency while handling large matrix blocks using the principles of linear algebra decomposition techniques.
Transcribed Image Text:Given the matrix \( M = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \), where \( A \in \mathbb{R}^{k \times k} \) is nonsingular, we proceed with the following problems: **a) Verify the "block LU decomposition" formula:** The block LU decomposition is given by: \[ M = \begin{bmatrix} I & 0 \\ CA^{-1} & I \end{bmatrix} \begin{bmatrix} A & B \\ 0 & D - CA^{-1}B \end{bmatrix}. \] The matrix \( D - CA^{-1}B \) is referred to as the **Schur complement** of \( A \) and is obtained after eliminating the first block of unknowns \( \mathbf{x}_1 \) in the system: \[ \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \end{bmatrix} \] The solution for \( \mathbf{x}_1 \) is: \[ \mathbf{x}_1 = A^{-1}(\mathbf{b}_1 - B\mathbf{x}_2); \] Substituting this into the second block of the equation yields: \[ \mathbf{b}_2 = C\mathbf{x}_1 + D\mathbf{x}_2 = CA^{-1}(\mathbf{b}_1 - B\mathbf{x}_2) + D\mathbf{x}_2 \implies (D - CA^{-1}B)\mathbf{x}_2 = \mathbf{b}_2 - CA^{-1}\mathbf{b}_1. \] **b) Construct the full LU decomposition of \( M \):** Compute an LU decomposition of \( A \), then evaluate and factorize \( D - CA^{-1}B \). Finally, manipulate the result using efficient operations **without explicitly constructing \( A^{-1} \)**. This approach ensures computational efficiency while handling large matrix blocks using the principles of linear algebra decomposition techniques.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,