a b c a b c If de f=2, find 4d +g 4e + h 4f+i gh i h i a 4d +g 4e +h 4f+i= (Simplify your answer.) g i
a b c a b c If de f=2, find 4d +g 4e + h 4f+i gh i h i a 4d +g 4e +h 4f+i= (Simplify your answer.) g i
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![### Matrix Equation and Determinant Problem
For this exercise, you are given a matrix equation and asked to find the determinant of a transformed matrix.
#### Given:
\[
\text{If} \begin{vmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{vmatrix} = 2, \ \text{find} \ \begin{vmatrix}
a & b & c \\
4d+g & 4e+h & 4f+i \\
g & h & i
\end{vmatrix}
\]
This is to say, if the determinant of the given matrix is 2, you need to find the determinant of a new matrix formed by modifying the second row of the original matrix.
#### Apply the properties of determinants:
1. **Linearity of Determinant**: The determinant of a matrix is a linear function of the rows (or columns). This means you can separate sums within a row for easier computation.
#### Explanation:
To solve for the determinant of the matrix:
\[ \begin{vmatrix}
a & b & c \\
4d+g & 4e+h & 4f+i \\
g & h & i
\end{vmatrix} \]
Using the linearity property, we can break this determinant down as follows:
\[ \begin{vmatrix}
a & b & c \\
4d+g & 4e+h & 4f+i \\
g & h & i
\end{vmatrix} = \begin{vmatrix}
a & b & c \\
4d & 4e & 4f \\
g & h & i
\end{vmatrix} + \begin{vmatrix}
a & b & c \\
g & h & i \\
g & h & i
\end{vmatrix}
\]
Next, understand the properties of determinants:
- A determinant of a matrix with two identical rows is zero.
- Scaling a row by a constant multiplies the determinant by that constant.
Thus:
\[ \begin{vmatrix}
a & b & c \\
4d & 4e & 4f \\
g & h & i
\end{vmatrix} = 4 \begin{vmatrix}
a & b & c \\
d & e & f \\
g & h &](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F965f2633-6838-4c2d-b94e-32b85de15479%2F2943c993-ca8f-4df4-80f6-4125afdb3a65%2F8yohz6n_processed.png&w=3840&q=75)
Transcribed Image Text:### Matrix Equation and Determinant Problem
For this exercise, you are given a matrix equation and asked to find the determinant of a transformed matrix.
#### Given:
\[
\text{If} \begin{vmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{vmatrix} = 2, \ \text{find} \ \begin{vmatrix}
a & b & c \\
4d+g & 4e+h & 4f+i \\
g & h & i
\end{vmatrix}
\]
This is to say, if the determinant of the given matrix is 2, you need to find the determinant of a new matrix formed by modifying the second row of the original matrix.
#### Apply the properties of determinants:
1. **Linearity of Determinant**: The determinant of a matrix is a linear function of the rows (or columns). This means you can separate sums within a row for easier computation.
#### Explanation:
To solve for the determinant of the matrix:
\[ \begin{vmatrix}
a & b & c \\
4d+g & 4e+h & 4f+i \\
g & h & i
\end{vmatrix} \]
Using the linearity property, we can break this determinant down as follows:
\[ \begin{vmatrix}
a & b & c \\
4d+g & 4e+h & 4f+i \\
g & h & i
\end{vmatrix} = \begin{vmatrix}
a & b & c \\
4d & 4e & 4f \\
g & h & i
\end{vmatrix} + \begin{vmatrix}
a & b & c \\
g & h & i \\
g & h & i
\end{vmatrix}
\]
Next, understand the properties of determinants:
- A determinant of a matrix with two identical rows is zero.
- Scaling a row by a constant multiplies the determinant by that constant.
Thus:
\[ \begin{vmatrix}
a & b & c \\
4d & 4e & 4f \\
g & h & i
\end{vmatrix} = 4 \begin{vmatrix}
a & b & c \\
d & e & f \\
g & h &
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)