A 65.0-kg bungee jumper steps off a bridge with a light bungee cord tied to her body and to the bridge. The unstretched length of the cord is 11.0 m. The jumper reaches the bottom of her motion 36.0 m below the bridge before bouncing back. We wish to find the time interval between her leaving the bridge and her arriving at the bottom of her motion. Her overall motion can be separated into an 11.0-m free fall and a 25.0-m section of simple harmonic oscillation. (a) For the free-fall part, what is the appropriate analysis model to describe her motion? (b) For what time interval is she in free fall? (c) For the simple harmonic oscillation part of theplunge, is the system of the bungee jumper, the spring, and the Earth isolated or nonisolated? (d) From your response in part (c) find the spring constant of the bungee cord. (e) What is the location of the equilibrium point where the spring force balances the gravitational force exerted on the jumper? (f) What is the angular frequency of the oscillation? (g) What time interval is required for the cord to stretch by 25.0 m? (h) What is the total time interval for the entire 36.0-m drop?
Simple harmonic motion
Simple harmonic motion is a type of periodic motion in which an object undergoes oscillatory motion. The restoring force exerted by the object exhibiting SHM is proportional to the displacement from the equilibrium position. The force is directed towards the mean position. We see many examples of SHM around us, common ones are the motion of a pendulum, spring and vibration of strings in musical instruments, and so on.
Simple Pendulum
A simple pendulum comprises a heavy mass (called bob) attached to one end of the weightless and flexible string.
Oscillation
In Physics, oscillation means a repetitive motion that happens in a variation with respect to time. There is usually a central value, where the object would be at rest. Additionally, there are two or more positions between which the repetitive motion takes place. In mathematics, oscillations can also be described as vibrations. The most common examples of oscillation that is seen in daily lives include the alternating current (AC) or the motion of a moving pendulum.
A 65.0-kg bungee jumper steps off a bridge with a light bungee cord tied to her body and to the bridge. The unstretched length of the cord is 11.0 m. The jumper reaches the bottom of her motion 36.0 m below the bridge before bouncing back. We wish to find the time interval between her leaving the bridge and her arriving at the bottom of her motion. Her overall motion can be separated into an 11.0-m free fall and a 25.0-m section of simple harmonic oscillation. (a) For the free-fall part, what is the appropriate analysis model to describe her motion? (b) For what time interval is she in free fall? (c) For the simple harmonic oscillation part of the
plunge, is the system of the bungee jumper, the spring, and the Earth isolated or nonisolated? (d) From your response in part (c) find the spring constant of the bungee cord. (e) What is the location of the equilibrium point where the spring force balances the gravitational force exerted on the jumper? (f) What is the angular frequency of the oscillation? (g) What time interval is required for the cord to stretch by 25.0 m? (h) What is the total time interval for the entire 36.0-m drop?
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images