a 600 gram banana sliding north on a frictionless table at 2.5 meters per second bounces of a 400 gram kiwi fruit that is initially at rest , after colliding the banana continues moving north at 0.5 meters per second. At the North edge of the track is a frictionless inclined ramp which the kiwi fruit slides up to then the kiwi comes back down the ramp , without losing energy , and will now be moving south , the kiwi will catch up and hit the banana again. How much momentum did the kiwi have just before the sticky collision ? how much just after ? how much did the kiwis momentum change
a 600 gram banana sliding north on a frictionless table at 2.5 meters per second bounces of a 400 gram kiwi fruit that is initially at rest , after colliding the banana continues moving north at 0.5 meters per second. At the North edge of the track is a frictionless inclined ramp which the kiwi fruit slides up to then the kiwi comes back down the ramp , without losing energy , and will now be moving south , the kiwi will catch up and hit the banana again. How much momentum did the kiwi have just before the sticky collision ? how much just after ? how much did the kiwis momentum change
Related questions
Question
a 600 gram banana sliding north on a frictionless table at 2.5 meters per second bounces of a 400 gram kiwi fruit that is initially at rest , after colliding the banana continues moving north at 0.5 meters per second. At the North edge of the track is a frictionless inclined ramp which the kiwi fruit slides up to then the kiwi comes back down the ramp , without losing energy , and will now be moving south , the kiwi will catch up and hit the banana again. How much momentum did the kiwi have just before the sticky collision ? how much just after ? how much did the kiwis momentum change ?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps