(a) (5.18) Find the Newton's Divided Difference interpolating polynomial for the points (-h, 0), (0, 1), (h,0). (b) (5.19) Find the Newton's Divided Difference interpolating polynomial for the points (-h, 1), (0, 0), (h, 0).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

a and b please

**Exercise 5.2.10**: Integrate Newton's divided-difference interpolating polynomial to prove the formulas (a) (5.18) and (b) (5.19).

**Figure 5.2(b)** shows the region under the parabola \( P(x) \) interpolating the data points \((-h, 0), (0, 1),\) and \( (h, 0) \). The area is

\[
\int_{-h}^{h} P(x) \, dx = x - \frac{x^3}{3h^2} = \frac{4}{3}h
\]

**Figure 5.2(c)** shows the region between the x-axis and the parabola interpolating the data points \((-h, 1), (0, 0),\) and \((h, 0) \). The area is

\[
\int_{-h}^{h} P(x) \, dx = \frac{1}{3}h
\]

**(a) (5.18)**: Find the Newton's Divided Difference interpolating polynomial for the points \((-h, 0), (0, 1), (h, 0)\).

**(b) (5.19)**: Find the Newton's Divided Difference interpolating polynomial for the points \((-h, 1), (0, 0), (h, 0)\).
Transcribed Image Text:**Exercise 5.2.10**: Integrate Newton's divided-difference interpolating polynomial to prove the formulas (a) (5.18) and (b) (5.19). **Figure 5.2(b)** shows the region under the parabola \( P(x) \) interpolating the data points \((-h, 0), (0, 1),\) and \( (h, 0) \). The area is \[ \int_{-h}^{h} P(x) \, dx = x - \frac{x^3}{3h^2} = \frac{4}{3}h \] **Figure 5.2(c)** shows the region between the x-axis and the parabola interpolating the data points \((-h, 1), (0, 0),\) and \((h, 0) \). The area is \[ \int_{-h}^{h} P(x) \, dx = \frac{1}{3}h \] **(a) (5.18)**: Find the Newton's Divided Difference interpolating polynomial for the points \((-h, 0), (0, 1), (h, 0)\). **(b) (5.19)**: Find the Newton's Divided Difference interpolating polynomial for the points \((-h, 1), (0, 0), (h, 0)\).
Expert Solution
Step 1: Finding the interpolating polynomial

(a)

x                  fx                    1st order                                  2nd order

x0=-h      y0=0

                                           x0,x1=y1-y0x1-x0            =1h

x1=0        y1=1                                                         x0,x1,x2=x1,x2-x0,x1x2-x0                  =-2h2h                   =-1h2

                                          x1,x2=y2-y1x2-x1            =-1h

x2=h      y2=0

y=fx       =y0+x-x0fx0,x1+x-x0x-x1fx0,x1,x2       =0+x+h1h+x+hx-1h2        =x+hh1-xh        =h2-x2h2        =1-xh2

Hence the polynomial is 1-xh2

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,