(a) (5.18) Find the Newton's Divided Difference interpolating polynomial for the points (-h, 0), (0, 1), (h,0). (b) (5.19) Find the Newton's Divided Difference interpolating polynomial for the points (-h, 1), (0, 0), (h, 0).
(a) (5.18) Find the Newton's Divided Difference interpolating polynomial for the points (-h, 0), (0, 1), (h,0). (b) (5.19) Find the Newton's Divided Difference interpolating polynomial for the points (-h, 1), (0, 0), (h, 0).
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
a and b please
![**Exercise 5.2.10**: Integrate Newton's divided-difference interpolating polynomial to prove the formulas (a) (5.18) and (b) (5.19).
**Figure 5.2(b)** shows the region under the parabola \( P(x) \) interpolating the data points \((-h, 0), (0, 1),\) and \( (h, 0) \). The area is
\[
\int_{-h}^{h} P(x) \, dx = x - \frac{x^3}{3h^2} = \frac{4}{3}h
\]
**Figure 5.2(c)** shows the region between the x-axis and the parabola interpolating the data points \((-h, 1), (0, 0),\) and \((h, 0) \). The area is
\[
\int_{-h}^{h} P(x) \, dx = \frac{1}{3}h
\]
**(a) (5.18)**: Find the Newton's Divided Difference interpolating polynomial for the points \((-h, 0), (0, 1), (h, 0)\).
**(b) (5.19)**: Find the Newton's Divided Difference interpolating polynomial for the points \((-h, 1), (0, 0), (h, 0)\).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F8072c6db-e911-45d0-83c0-abe401e94f38%2F5a5049e3-e310-44b6-a62a-9a13fa9c4e5e%2Ftdl70em_processed.png&w=3840&q=75)
Transcribed Image Text:**Exercise 5.2.10**: Integrate Newton's divided-difference interpolating polynomial to prove the formulas (a) (5.18) and (b) (5.19).
**Figure 5.2(b)** shows the region under the parabola \( P(x) \) interpolating the data points \((-h, 0), (0, 1),\) and \( (h, 0) \). The area is
\[
\int_{-h}^{h} P(x) \, dx = x - \frac{x^3}{3h^2} = \frac{4}{3}h
\]
**Figure 5.2(c)** shows the region between the x-axis and the parabola interpolating the data points \((-h, 1), (0, 0),\) and \((h, 0) \). The area is
\[
\int_{-h}^{h} P(x) \, dx = \frac{1}{3}h
\]
**(a) (5.18)**: Find the Newton's Divided Difference interpolating polynomial for the points \((-h, 0), (0, 1), (h, 0)\).
**(b) (5.19)**: Find the Newton's Divided Difference interpolating polynomial for the points \((-h, 1), (0, 0), (h, 0)\).
Expert Solution

Step 1: Finding the interpolating polynomial
(a)
st order nd order
Hence the polynomial is
Step by step
Solved in 2 steps

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

