A 5.00 kg satellite is launched from the north pole into a circular orbit 800 km above the surface of the earth. How much energy is required to achieve this orbit? (The following set of questions will guide you to the answer.) Me = 5.98x1024 kg; Re = 6.37x106 m. G = 6.67x10-11 N m2/ kg2. Note: The problem specifies that the satellite is being launched from the north pole so that we can ignore the initial circular motion and initial kinetic energy as it rotates once every day. In reality, space agencies choose to launch rockets from southern latitudes to take advantage of the initial velocity they have due to this motion. a. calculate the change in gravitational potential energy. (Give your answer in MJ.) b. What is the gravitational force on the satellite? (Give your answer in N.) c. What is the velocity of the satellite? (Give your answer in m/s.) Note: The weight force is equal to m v2/R. d. What is the kinetic energy in this orbit? (Give your answer in MJ.) e. how much total energy was needed to bring the satellite into this orbit? (Give your answer in MJ.)

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Topic Video
Question

A 5.00 kg satellite is launched from the north pole into a circular orbit 800 km above the surface of the earth. How much energy is required to achieve this orbit? (The following set of questions will guide you to the answer.)

Me = 5.98x1024 kg; Re = 6.37x106 m. G = 6.67x10-11 N m2/ kg2.

Note: The problem specifies that the satellite is being launched from the north pole so that we can ignore the initial circular motion and initial kinetic energy as it rotates once every day. In reality, space agencies choose to launch rockets from southern latitudes to take advantage of the initial velocity they have due to this motion.

a. calculate the change in gravitational potential energy. (Give your answer in MJ.)

b. What is the gravitational force on the satellite? (Give your answer in N.)

c. What is the velocity of the satellite? (Give your answer in m/s.)

Note: The weight force is equal to m v2/R. 

d. What is the kinetic energy in this orbit? (Give your answer in MJ.)

e. how much total energy was needed to bring the satellite into this orbit? (Give your answer in MJ.)

 

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 15 images

Blurred answer
Knowledge Booster
Kinetic energy
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON