A 5-kg homogeneous disk with a radius of 0.2 m is connected to a spring (k=50 N/m) as shown. At the instant shown (position 1), the spring is undeformed. The disk is released fr 25-degree incline. A clockwise constant 2 N-m couple is applied to the disk as it rolls down the inclined surface. Note: I disk = mR² 2 N-m 5-kg 50 N/m 000000000 1. Which of the following forces does negative work on the system? Friction between the disk and the inclined surface + x Mark 0.00 out of 20.00 2. Which of the following best approximates the magnitude of the work done by the spring?

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
A 5-kg homogeneous disk with a radius of 0.2 m is connected to a spring (k=50 N/m) as shown. At the instant shown (position 1), the spring is undeformed. The disk is released from rest and rolls without slipping to position 2, which is 0.1 m down the
25-degree incline. A clockwise constant 2 N-m couple is applied to the disk as it rolls down the inclined surface.
Note: I disk = mR²2
2 N-m
0.2
5-kg
25°
k = 50 N/m
10000000
1. Which of the following forces does negative work on the system?
Friction between the disk and the inclined surface + x
Mark 0.00 out of 20.00
2. Which of the following best approximates the magnitude of the work done by the spring?
0.250 J + ✓
3. Which of the following best approximates the work done by the 2 N-m couple?
-1.000 J + ✓
4. Which of the following gives the correct expression of the kinetic energy of the system at position 2 in terms of the disk's angular velocity, w₂?
0.15 w2*2 +
4.53 rad/s + x
5. Which of the following best approximates the magnitude of the angular velocity of the disk at position 2?
Transcribed Image Text:A 5-kg homogeneous disk with a radius of 0.2 m is connected to a spring (k=50 N/m) as shown. At the instant shown (position 1), the spring is undeformed. The disk is released from rest and rolls without slipping to position 2, which is 0.1 m down the 25-degree incline. A clockwise constant 2 N-m couple is applied to the disk as it rolls down the inclined surface. Note: I disk = mR²2 2 N-m 0.2 5-kg 25° k = 50 N/m 10000000 1. Which of the following forces does negative work on the system? Friction between the disk and the inclined surface + x Mark 0.00 out of 20.00 2. Which of the following best approximates the magnitude of the work done by the spring? 0.250 J + ✓ 3. Which of the following best approximates the work done by the 2 N-m couple? -1.000 J + ✓ 4. Which of the following gives the correct expression of the kinetic energy of the system at position 2 in terms of the disk's angular velocity, w₂? 0.15 w2*2 + 4.53 rad/s + x 5. Which of the following best approximates the magnitude of the angular velocity of the disk at position 2?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Forced Undamped Vibrations
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY