A 4-m high and 6-m-wide wall consists of long 15-cm x 20 cm cross section horizontal bricks (k of 0.69 W/m K) separated by 2-cm thick plaster layers (k of 0.2 W/m K). There are also 2-cm-thck plaster layers on each side of the brick and a 3-cm-thick rigid foam (k of 0.025 W/m K) on the inner side of the wall. See figure below. The indoor and the outdoor air temperatures are 18 and -8oC, respectively. Convective heat transfer coefficient for inside and outer surfaces are 8 and 22 W/m2 K, respectively. Assume 1-D heat transfer. Neglect radiation. assume any plane parallel to the x-axis is adiabatic, , draw the thermal circuit and calculate the heat transfer rate through the
A 4-m high and 6-m-wide wall consists of long 15-cm x 20 cm cross section horizontal bricks (k of 0.69 W/m K) separated by 2-cm thick plaster layers (k of 0.2 W/m K). There are also 2-cm-thck plaster layers on each side of the brick and a 3-cm-thick rigid foam (k of 0.025 W/m K) on the inner side of the wall. See figure below. The indoor and the outdoor air temperatures are 18 and -8oC, respectively. Convective heat transfer coefficient for inside and outer surfaces are 8 and 22 W/m2 K, respectively. Assume 1-D heat transfer. Neglect radiation. assume any plane parallel to the x-axis is adiabatic, , draw the thermal circuit and calculate the heat transfer rate through the
Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
Related questions
Question
- A 4-m high and 6-m-wide wall consists of long 15-cm x 20 cm cross section horizontal bricks (k of 0.69 W/m K) separated by 2-cm thick plaster layers (k of 0.2 W/m K). There are also 2-cm-thck plaster layers on each side of the brick and a 3-cm-thick rigid foam (k of 0.025 W/m K) on the inner side of the wall. See figure below. The indoor and the outdoor air temperatures are 18 and -8oC, respectively. Convective heat transfer coefficient for inside and outer surfaces are 8 and 22 W/m2 K, respectively. Assume 1-D heat transfer. Neglect radiation.
assume any plane parallel to the x-axis is adiabatic, , draw the thermal circuit and calculate the heat transfer rate through the wall
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 4 images
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The