A) 4 2 (9) The derivative of 2sin-¹x (2sin-1x) In 2 A) √1-x2 B) is: 2sin 1x √1-x² (2sin 1x) In 2 C) √1+x² D) (2cos-¹x) In 2 √1-x²
A) 4 2 (9) The derivative of 2sin-¹x (2sin-1x) In 2 A) √1-x2 B) is: 2sin 1x √1-x² (2sin 1x) In 2 C) √1+x² D) (2cos-¹x) In 2 √1-x²
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
please solve questionnnn 9
![### Mathematics Exam Questions
#### Instructions: Answer the following mathematical questions. Select the correct option from the given choices. Use proper mathematical notations and methods wherever applicable.
1. \( \log_6(9) + \log_6(4) \) is equal to:
- A) \( \log_6(13) \)
- B) 2
- C) \( \log_6\left(\frac{9}{4}\right) \)
- D) 6
2. Solve the equation \(\ln\left(\frac{x-1}{x+1}\right) = 2\):
- A) \( \frac{e^2+1}{e^2-1} \)
- B) \( \frac{e^{2}+1}{1-e^{2}} \)
- C) \( \frac{2+2e}{1-2e} \)
- D) \( \frac{2+2e}{2-1} \)
3. The solutions of \(2x+e^x - 6 = 0\) are:
- A) \( x = \ln(2), \ln(3) \)
- B) \( x = \ln(2), \ln(-3) \)
- C) \( x = 2, -3 \)
- D) \( x = \ln(2) \)
4. Assume \( f \) is a differentiable function, \(\int x^3 f'(x) \, dx = \):
- A) \( x^3 f(x) - \frac{1}{4} x^4 f(x) \, dx \)
- B) \( \frac{1}{4} x^4 f(x) + c \)
- C) \( x^3 f''(x) - 3 x^2 f(x) \, dx \)
- D) \( x^3 f(x) - 3 \int x^2 f(x) \, dx \)
5. Which of the following improper integrals converge:
- A) \( \int_0^\infty x^8 \, dx \)
- B) \( \int_{-\infty}^\infty e^{-2x} \, dx \)
- C) \(](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F5231f5b4-e859-48c1-839f-bbb3459ab86b%2F4f3ac644-9929-4009-b84f-d395c9df09cd%2F1sfq4dh_processed.png&w=3840&q=75)
Transcribed Image Text:### Mathematics Exam Questions
#### Instructions: Answer the following mathematical questions. Select the correct option from the given choices. Use proper mathematical notations and methods wherever applicable.
1. \( \log_6(9) + \log_6(4) \) is equal to:
- A) \( \log_6(13) \)
- B) 2
- C) \( \log_6\left(\frac{9}{4}\right) \)
- D) 6
2. Solve the equation \(\ln\left(\frac{x-1}{x+1}\right) = 2\):
- A) \( \frac{e^2+1}{e^2-1} \)
- B) \( \frac{e^{2}+1}{1-e^{2}} \)
- C) \( \frac{2+2e}{1-2e} \)
- D) \( \frac{2+2e}{2-1} \)
3. The solutions of \(2x+e^x - 6 = 0\) are:
- A) \( x = \ln(2), \ln(3) \)
- B) \( x = \ln(2), \ln(-3) \)
- C) \( x = 2, -3 \)
- D) \( x = \ln(2) \)
4. Assume \( f \) is a differentiable function, \(\int x^3 f'(x) \, dx = \):
- A) \( x^3 f(x) - \frac{1}{4} x^4 f(x) \, dx \)
- B) \( \frac{1}{4} x^4 f(x) + c \)
- C) \( x^3 f''(x) - 3 x^2 f(x) \, dx \)
- D) \( x^3 f(x) - 3 \int x^2 f(x) \, dx \)
5. Which of the following improper integrals converge:
- A) \( \int_0^\infty x^8 \, dx \)
- B) \( \int_{-\infty}^\infty e^{-2x} \, dx \)
- C) \(
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)