A 33 MVA, 13.8 KV, 3-phase generator has a sub transient reactance of 0.5%. The generator supplies a motor through a step-up transformer - transmission line – step-down transformer arrangement. The motor has rated input of 25 MVA at 6.6 KV with 25% sub transient reactance. Draw the equivalent per unit impedance diagram by selecting 25 MVA (30), 6.6 KV (LL) as base values in the motor circuit, given the transformer and transmission line data as under: Step up transformer bank: three single phase units, connected A-Y, each rated 10 MVA, 13.2/6.6 KV with 7.7 % leakage reactance and 0.5 % leakage resistance; Transmission line: 75 KM long with a positive sequence reactance of 0.8 ohm/ KM and a resistance of 0.2 ohm/ KM; and Step down transformer bank: three single phase units, connected A-Y, each rated 8.33 MVA, 110/3.98 KV with 8% leakage reactance and 0.8 % leakage resistance;

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question
Help me with the power system
A 33 MVA, 13.8 KV, 3-phase generator has a sub transient reactance of 0.5%. The
generator supplies a motor through a step-up transformer - transmission line – step-down
transformer arrangement. The motor has rated input of 25 MVA at 6.6 KV with 25% sub
transient reactance. Draw the equivalent per unit impedance diagram by selecting 25
MVA (30), 6.6 KV (LL) as base values in the motor circuit, given the transformer and
transmission line data as under:
Step up transformer bank: three single phase units, connected A-Y, each rated 10 MVA,
13.2/6.6 KV with 7.7 % leakage reactance and 0.5 % leakage resistance;
Transmission line: 75 KM long with a positive sequence reactance of 0.8 ohm/ KM and a
resistance of 0.2 ohm/ KM; and
Step down transformer bank: three single phase units, connected A-Y, each rated 8.33
MVA, 110/3.98 KV with 8% leakage reactance and 0.8 % leakage resistance;
Transcribed Image Text:A 33 MVA, 13.8 KV, 3-phase generator has a sub transient reactance of 0.5%. The generator supplies a motor through a step-up transformer - transmission line – step-down transformer arrangement. The motor has rated input of 25 MVA at 6.6 KV with 25% sub transient reactance. Draw the equivalent per unit impedance diagram by selecting 25 MVA (30), 6.6 KV (LL) as base values in the motor circuit, given the transformer and transmission line data as under: Step up transformer bank: three single phase units, connected A-Y, each rated 10 MVA, 13.2/6.6 KV with 7.7 % leakage reactance and 0.5 % leakage resistance; Transmission line: 75 KM long with a positive sequence reactance of 0.8 ohm/ KM and a resistance of 0.2 ohm/ KM; and Step down transformer bank: three single phase units, connected A-Y, each rated 8.33 MVA, 110/3.98 KV with 8% leakage reactance and 0.8 % leakage resistance;
Expert Solution
steps

Step by step

Solved in 5 steps with 2 images

Blurred answer
Knowledge Booster
Protection System for Machines
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,