A 20 kg block on a horizontal surface is attached to a horizontal spring of spring constant k=4.0 kN/m. The block is pulled to the right so that the spring is stretched 10 cm beyond its relaxed length, and the block is then released from rest.The frictional force between the sliding block and the surface has a magnitude of 80 N. (a) What is the kinetic energy of the block when it has moved 2.0 cm from its point of release? (b) What is the kinetic energy of the block when it first slides back through the point at which the spring is relaxed? (c) What is the maximum kinetic energy attained by the block as it slides from its point of release to the point at which the spring is relaxed?
Simple harmonic motion
Simple harmonic motion is a type of periodic motion in which an object undergoes oscillatory motion. The restoring force exerted by the object exhibiting SHM is proportional to the displacement from the equilibrium position. The force is directed towards the mean position. We see many examples of SHM around us, common ones are the motion of a pendulum, spring and vibration of strings in musical instruments, and so on.
Simple Pendulum
A simple pendulum comprises a heavy mass (called bob) attached to one end of the weightless and flexible string.
Oscillation
In Physics, oscillation means a repetitive motion that happens in a variation with respect to time. There is usually a central value, where the object would be at rest. Additionally, there are two or more positions between which the repetitive motion takes place. In mathematics, oscillations can also be described as vibrations. The most common examples of oscillation that is seen in daily lives include the alternating current (AC) or the motion of a moving pendulum.
A 20 kg block on a horizontal surface is attached to a horizontal
spring of spring constant k=4.0 kN/m. The block is pulled
to the right so that the spring is stretched 10 cm beyond its relaxed
length, and the block is then released from rest.The frictional force
between the sliding block and the surface has a magnitude of 80 N.
(a) What is the kinetic energy of the block when it has moved
2.0 cm from its point of release? (b) What is the kinetic energy of
the block when it first slides back through the point at which the
spring is relaxed? (c) What is the maximum kinetic energy attained
by the block as it slides from its point of release to the point at
which the spring is relaxed?
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 4 images