а — 2 a Suppose Det - 10, Det 10, and Det а —2 – 2. .cd] 1 -2 + b a Det = 1+d a Det

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Determinants of Matrices - Practice Problems**

Consider the following determinants of matrices:

Suppose \( \text{Det} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = -10 \), \( \text{Det} \begin{bmatrix} a & -2 \\ c & 1 \end{bmatrix} = 10 \), and \( \text{Det} \begin{bmatrix} a & -2 \\ c & 0 \end{bmatrix} = -2 \).

Calculate the following determinants:

1. \( \text{Det} \begin{bmatrix} a & -2 + b \\ c & 1 + d \end{bmatrix} = \boxed{\phantom{}} \)

2. \( \text{Det} \begin{bmatrix} a & 0 \\ c & 1 \end{bmatrix} = \boxed{\phantom{}} \)
Transcribed Image Text:**Determinants of Matrices - Practice Problems** Consider the following determinants of matrices: Suppose \( \text{Det} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = -10 \), \( \text{Det} \begin{bmatrix} a & -2 \\ c & 1 \end{bmatrix} = 10 \), and \( \text{Det} \begin{bmatrix} a & -2 \\ c & 0 \end{bmatrix} = -2 \). Calculate the following determinants: 1. \( \text{Det} \begin{bmatrix} a & -2 + b \\ c & 1 + d \end{bmatrix} = \boxed{\phantom{}} \) 2. \( \text{Det} \begin{bmatrix} a & 0 \\ c & 1 \end{bmatrix} = \boxed{\phantom{}} \)
### Matrix Transformations and Their Effects on Geometric Figures

Consider the matrix \( A = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \). This matrix represents a linear transformation from \(\mathbb{R}^2\) to \(\mathbb{R}^2\).

#### Transformation of a Unit Square

We will observe the effect of this transformation on a unit square whose vertices are at the points \( (0, 0) \), \( (1, 0) \), \( (1, 1) \), and \( (0, 1) \).

**Vertices Before Transformation:**
- \( (0, 0) \)
- \( (1, 0) \)
- \( (1, 1) \)
- \( (0, 1) \)

**Applying the Transformation**:
Let’s apply the transformation matrix to each vertex:

1. To \( (0, 0) \):
   \[
   \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}
   \begin{bmatrix} 0 \\ 0 \end{bmatrix} =
   \begin{bmatrix} 0 \\ 0 \end{bmatrix}
   \]

2. To \( (1, 0) \):
   \[
   \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}
   \begin{bmatrix} 1 \\ 0 \end{bmatrix} =
   \begin{bmatrix} 1 \\ 0 \end{bmatrix}
   \]

3. To \( (1, 1) \):
   \[
   \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}
   \begin{bmatrix} 1 \\ 1 \end{bmatrix} =
   \begin{bmatrix} 1 \\ 3 \end{bmatrix}
   \]

4. To \( (0, 1) \):
   \[
   \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}
   \begin{bmatrix} 0 \\ 1 \end{bmatrix} =
   \begin{bmatrix}
Transcribed Image Text:### Matrix Transformations and Their Effects on Geometric Figures Consider the matrix \( A = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \). This matrix represents a linear transformation from \(\mathbb{R}^2\) to \(\mathbb{R}^2\). #### Transformation of a Unit Square We will observe the effect of this transformation on a unit square whose vertices are at the points \( (0, 0) \), \( (1, 0) \), \( (1, 1) \), and \( (0, 1) \). **Vertices Before Transformation:** - \( (0, 0) \) - \( (1, 0) \) - \( (1, 1) \) - \( (0, 1) \) **Applying the Transformation**: Let’s apply the transformation matrix to each vertex: 1. To \( (0, 0) \): \[ \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \] 2. To \( (1, 0) \): \[ \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \] 3. To \( (1, 1) \): \[ \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \] 4. To \( (0, 1) \): \[ \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix}
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Complexity
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,