а — 2 a Suppose Det - 10, Det 10, and Det а —2 – 2. .cd] 1 -2 + b a Det = 1+d a Det
а — 2 a Suppose Det - 10, Det 10, and Det а —2 – 2. .cd] 1 -2 + b a Det = 1+d a Det
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![**Determinants of Matrices - Practice Problems**
Consider the following determinants of matrices:
Suppose \( \text{Det} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = -10 \), \( \text{Det} \begin{bmatrix} a & -2 \\ c & 1 \end{bmatrix} = 10 \), and \( \text{Det} \begin{bmatrix} a & -2 \\ c & 0 \end{bmatrix} = -2 \).
Calculate the following determinants:
1. \( \text{Det} \begin{bmatrix} a & -2 + b \\ c & 1 + d \end{bmatrix} = \boxed{\phantom{}} \)
2. \( \text{Det} \begin{bmatrix} a & 0 \\ c & 1 \end{bmatrix} = \boxed{\phantom{}} \)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F033ffcef-1b19-43ad-9f3f-f180005640df%2Ff1084c2e-632c-480e-aca3-47f1f71963fd%2F1j2pcm.png&w=3840&q=75)
Transcribed Image Text:**Determinants of Matrices - Practice Problems**
Consider the following determinants of matrices:
Suppose \( \text{Det} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = -10 \), \( \text{Det} \begin{bmatrix} a & -2 \\ c & 1 \end{bmatrix} = 10 \), and \( \text{Det} \begin{bmatrix} a & -2 \\ c & 0 \end{bmatrix} = -2 \).
Calculate the following determinants:
1. \( \text{Det} \begin{bmatrix} a & -2 + b \\ c & 1 + d \end{bmatrix} = \boxed{\phantom{}} \)
2. \( \text{Det} \begin{bmatrix} a & 0 \\ c & 1 \end{bmatrix} = \boxed{\phantom{}} \)
![### Matrix Transformations and Their Effects on Geometric Figures
Consider the matrix \( A = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \). This matrix represents a linear transformation from \(\mathbb{R}^2\) to \(\mathbb{R}^2\).
#### Transformation of a Unit Square
We will observe the effect of this transformation on a unit square whose vertices are at the points \( (0, 0) \), \( (1, 0) \), \( (1, 1) \), and \( (0, 1) \).
**Vertices Before Transformation:**
- \( (0, 0) \)
- \( (1, 0) \)
- \( (1, 1) \)
- \( (0, 1) \)
**Applying the Transformation**:
Let’s apply the transformation matrix to each vertex:
1. To \( (0, 0) \):
\[
\begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}
\begin{bmatrix} 0 \\ 0 \end{bmatrix} =
\begin{bmatrix} 0 \\ 0 \end{bmatrix}
\]
2. To \( (1, 0) \):
\[
\begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}
\begin{bmatrix} 1 \\ 0 \end{bmatrix} =
\begin{bmatrix} 1 \\ 0 \end{bmatrix}
\]
3. To \( (1, 1) \):
\[
\begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}
\begin{bmatrix} 1 \\ 1 \end{bmatrix} =
\begin{bmatrix} 1 \\ 3 \end{bmatrix}
\]
4. To \( (0, 1) \):
\[
\begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}
\begin{bmatrix} 0 \\ 1 \end{bmatrix} =
\begin{bmatrix}](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F033ffcef-1b19-43ad-9f3f-f180005640df%2Ff1084c2e-632c-480e-aca3-47f1f71963fd%2F8jteyur.png&w=3840&q=75)
Transcribed Image Text:### Matrix Transformations and Their Effects on Geometric Figures
Consider the matrix \( A = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \). This matrix represents a linear transformation from \(\mathbb{R}^2\) to \(\mathbb{R}^2\).
#### Transformation of a Unit Square
We will observe the effect of this transformation on a unit square whose vertices are at the points \( (0, 0) \), \( (1, 0) \), \( (1, 1) \), and \( (0, 1) \).
**Vertices Before Transformation:**
- \( (0, 0) \)
- \( (1, 0) \)
- \( (1, 1) \)
- \( (0, 1) \)
**Applying the Transformation**:
Let’s apply the transformation matrix to each vertex:
1. To \( (0, 0) \):
\[
\begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}
\begin{bmatrix} 0 \\ 0 \end{bmatrix} =
\begin{bmatrix} 0 \\ 0 \end{bmatrix}
\]
2. To \( (1, 0) \):
\[
\begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}
\begin{bmatrix} 1 \\ 0 \end{bmatrix} =
\begin{bmatrix} 1 \\ 0 \end{bmatrix}
\]
3. To \( (1, 1) \):
\[
\begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}
\begin{bmatrix} 1 \\ 1 \end{bmatrix} =
\begin{bmatrix} 1 \\ 3 \end{bmatrix}
\]
4. To \( (0, 1) \):
\[
\begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}
\begin{bmatrix} 0 \\ 1 \end{bmatrix} =
\begin{bmatrix}
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)