A 15 kW, 230 V, shunt generator was run light as a motor to determine its stray power losses at rated load. The applied voltage across the armature, computed for test was 256 V and the armature current drawn is 2.5 A. The armature and shunt field resistances are 0.25 and 115 ohms, respectively. Calculate the generator efficiency at half load. Assume stray power losses to be constant.

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question
100%
A 15 kW, 230 V, shunt generator was run light as a motor
to determine its stray power losses at rated load. The
applied voltage across the armature, computed for test
was 256 V and the armature current drawn is 2.5 A. The
armature and shunt field resistances are 0.25 and 115
ohms, respectively. Calculate the generator efficiency at
half load. Assume stray power losses to be constant.
Transcribed Image Text:A 15 kW, 230 V, shunt generator was run light as a motor to determine its stray power losses at rated load. The applied voltage across the armature, computed for test was 256 V and the armature current drawn is 2.5 A. The armature and shunt field resistances are 0.25 and 115 ohms, respectively. Calculate the generator efficiency at half load. Assume stray power losses to be constant.
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Synchronous Generator
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,