A 12.0 kg shell is launched at an angle of 55.0° above the horizontal with an initial speed of 150 m/s. At its highest point, the shell explodes into two fragments, one three times heavier than the other. The two fragments reach the ground at the same time. Ignore air resistance. If the heavier fragment lands back at the point from which the shell was launched, where will the lighter fragment land, and how much energy was released in the explosion?

icon
Related questions
Question
100%

A 12.0 kg shell is launched at an angle of 55.0° above the horizontal with an initial speed of 150 m/s. At its highest point, the shell explodes into two fragments, one three times heavier than the other. The two fragments reach the ground at the same time. Ignore air resistance. If the heavier fragment lands back at the point from which the shell was launched, where will the lighter fragment land, and how much energy was released in the explosion?

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 8 steps

Blurred answer