A = 12 34 O A. Find A-1 A = 3 2 A = - 2 1 OB. Does not exist O C. O D. A = 3 44] 2 2 -1 -2 -3 -4

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question
100%
The question presented involves finding the inverse of the given matrix \( A \).

Matrix \( A \) is defined as:

\[
A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}
\]

The task is to find the inverse \( A^{-1} \). The options provided are:

- **Option A:**

\[
A^{-1} = \begin{bmatrix} -2 & 1 \\ 3 & -\frac{1}{2} \end{bmatrix}
\]

- **Option B:**

\( A^{-1} \) does not exist.

- **Option C:**

\[
A^{-1} = \begin{bmatrix} -1 & -2 \\ -3 & -4 \end{bmatrix}
\]

- **Option D:**

\[
A^{-1} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}
\]

To select the correct option, students need to understand how to calculate the inverse of a 2x2 matrix using the formula:

\[
A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}
\]

where the matrix \( A \) is:

\[
\begin{bmatrix} a & b \\ c & d \end{bmatrix}
\]

For the matrix given: \( a = 1 \), \( b = 2 \), \( c = 3 \), \( d = 4 \). Therefore, students should compute the determinant \( ad-bc \) and then apply the formula to find the correct inverse.
Transcribed Image Text:The question presented involves finding the inverse of the given matrix \( A \). Matrix \( A \) is defined as: \[ A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \] The task is to find the inverse \( A^{-1} \). The options provided are: - **Option A:** \[ A^{-1} = \begin{bmatrix} -2 & 1 \\ 3 & -\frac{1}{2} \end{bmatrix} \] - **Option B:** \( A^{-1} \) does not exist. - **Option C:** \[ A^{-1} = \begin{bmatrix} -1 & -2 \\ -3 & -4 \end{bmatrix} \] - **Option D:** \[ A^{-1} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \] To select the correct option, students need to understand how to calculate the inverse of a 2x2 matrix using the formula: \[ A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \] where the matrix \( A \) is: \[ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \] For the matrix given: \( a = 1 \), \( b = 2 \), \( c = 3 \), \( d = 4 \). Therefore, students should compute the determinant \( ad-bc \) and then apply the formula to find the correct inverse.
Expert Solution
Step p

Find the adjoint of matrix A and divide that with the determinant of matrix A

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education