A 100 kg person pushes a box up a ramp at constant speed. The mass of the box is 30 kg, the coefficient of kinetic friction between the box and the ramp is 0.2, and the ramp is inclined 25 degrees above the horizontal. The person (new at pushing boxes up ramps) pushes purely in the horizontal direction. HINT: you must draw complete FBDs to receive full credit. a) Find an expression for the magnitude of the normal force on the box due to the ramp. This answer should be left in variables, not numbers. b) Find the magnitude of the force on the box due to the person. c) Each step the person takes requires a force of static friction so that she does not slip. Find the magnitude of the force of static friction on the person due to the ramp. d) Find the minimum coefficient of static friction between the person's shoes and the ramp, so that this feat is possible
Gravitational force
In nature, every object is attracted by every other object. This phenomenon is called gravity. The force associated with gravity is called gravitational force. The gravitational force is the weakest force that exists in nature. The gravitational force is always attractive.
Acceleration Due to Gravity
In fundamental physics, gravity or gravitational force is the universal attractive force acting between all the matters that exist or exhibit. It is the weakest known force. Therefore no internal changes in an object occurs due to this force. On the other hand, it has control over the trajectories of bodies in the solar system and in the universe due to its vast scope and universal action. The free fall of objects on Earth and the motions of celestial bodies, according to Newton, are both determined by the same force. It was Newton who put forward that the moon is held by a strong attractive force exerted by the Earth which makes it revolve in a straight line. He was sure that this force is similar to the downward force which Earth exerts on all the objects on it.

Trending now
This is a popular solution!
Step by step
Solved in 7 steps with 2 images









