A 1 kg collar can slide on a horizontal rod, which is free to rotate about a vertical shaft. The collar is initially held at A by a cord attached to the shaft. A spring of constant 30 N/m is attached to the collar and to the shaft and is undeformed when the collar is at A. As the rod rotates at the rate 0=16 rad/s, the cord is cut and the collar moves out along the rod. Neglecting friction and the mass of the rod, determine (a) the radial and transverse components of the acceleration of the collar at A, (b) the acceleration of the collar relative to the rod at A, (c) the transverse component of the velocity of the collar at B.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
100%
A 1 kg collar can slide on a horizontal rod, which is free to
rotate about a vertical shaft. The collar is initially held at A by
a cord attached to the shaft. A spring of constant 30 N/m is
450 mm
-150 mm
attached to the collar and to the shaft and is undeformed
when the collar is at A. As the rod rotates at the rate 0=16
(A
В
rad/s, the cord is cut and the collar moves out along the rod.
Neglecting friction and the mass of the rod, determine (a) the
radial and transverse components of the acceleration of the
collar at A, (b) the acceleration of the collar relative to the rod
at A, (c) the transverse component of the velocity of the collar
at B.
Transcribed Image Text:A 1 kg collar can slide on a horizontal rod, which is free to rotate about a vertical shaft. The collar is initially held at A by a cord attached to the shaft. A spring of constant 30 N/m is 450 mm -150 mm attached to the collar and to the shaft and is undeformed when the collar is at A. As the rod rotates at the rate 0=16 (A В rad/s, the cord is cut and the collar moves out along the rod. Neglecting friction and the mass of the rod, determine (a) the radial and transverse components of the acceleration of the collar at A, (b) the acceleration of the collar relative to the rod at A, (c) the transverse component of the velocity of the collar at B.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY