A 0.39 g sample of sucrose (MW = 342. g/mol) is burned in a bomb calorimeter that has a heat capacity of 3.61 kJ/oC. The temperature of the calorimeter increases by 1.79oC. Calculate the molar heat of combustion of sucrose using the data from this experiment. Since this experiment is carried out under conditions of constant volume, we are measuring ∆E. Your answer should be in kJ/mol and entered to 3 sig. fig. ΔE =
Thermochemistry
Thermochemistry can be considered as a branch of thermodynamics that deals with the connections between warmth, work, and various types of energy, formed because of different synthetic and actual cycles. Thermochemistry describes the energy changes that occur as a result of reactions or chemical changes in a substance.
Exergonic Reaction
The term exergonic is derived from the Greek word in which ‘ergon’ means work and exergonic means ‘work outside’. Exergonic reactions releases work energy. Exergonic reactions are different from exothermic reactions, the one that releases only heat energy during the course of the reaction. So, exothermic reaction is one type of exergonic reaction. Exergonic reaction releases work energy in different forms like heat, light or sound. For example, a glow stick releases light making that an exergonic reaction and not an exothermic reaction since no heat is released. Even endothermic reactions at very high temperature are exergonic.
A 0.39 g sample of sucrose (MW = 342. g/mol) is burned in a bomb calorimeter that has a heat capacity of 3.61 kJ/oC. The temperature of the calorimeter increases by 1.79oC. Calculate the molar heat of combustion of sucrose using the data from this experiment. Since this experiment is carried out under conditions of constant volume, we are measuring ∆E. Your answer should be in kJ/mol and entered to 3 sig. fig.
ΔE =
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images