a (0 32. x²y dx dy -Va?-y?

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Question

Evaluate the iterated integral by converting to polar coordinates.

SLr
x²y dx dy
32.
-Ja?-y?
Transcribed Image Text:SLr x²y dx dy 32. -Ja?-y?
Expert Solution
Step 1

Given Integral, I=0a-a2-y20 x2y dx dy

Use Polar coordinates, 

x=rcosθ, y=rsinθ, dxdy=rdrdθ limits: x=0rcosθ=0θ=π2x=-a2-y2x2+y2=a2r=ax=-a2-y2x=-a1-sin2θx=-acosθ a=-acosθθ=π

 

Step 2

Thus,

0a-a2-y20 x2y dx dy=0aπ2πrcosθ2rsinθ rdrdθ=0aπ2πr4cos2θsinθ dr dθ=0ar4 drπ2πcos2θsinθdθ=0ar4 dr-π2πcos2θ-sinθdθ=0ar4 dr-cos3θ3π2π=r550a-cos3π3+-cos3π23=a5513+00a-a2-y20 x2y dx dy=a515

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Double Integration
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,