Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
How did you get the part circle in red
![### Transcription for Educational Website
#### Calculus Question: Trigonometric Substitution in Integration
We start with the integral:
\[ \int \frac{9x^2}{(81 + x^2)^2} \, dx \]
Using the substitution \[ x = 9 \, \tan \theta \], we find:
\[ dx = 9 \, \sec^2 \theta \, d\theta \]
This transforms the integral into:
\[ \int \frac{9 (9 \tan \theta)^2 \cdot 9 \sec^2 \theta \, d\theta}{(81 + (9 \tan \theta)^2)^2} \]
Simplified, it becomes:
\[ \int \frac{(9^4 \tan^2 \theta \sec^2 \theta \, d\theta)}{(9^4 (1 + \tan^2 \theta)^2)} \]
Further simplifying the expression, we get:
\[ \int \frac{\tan^2 \theta \sec^2 \theta \, d\theta}{(\sec^2 \theta)^2} \]
Note how trigonometric identities and substitutions help in transforming the integral into a more manageable form. This entire process often simplifies the integral to a standard form that can be easily evaluated.
---
Notice that the image contains hand-written steps that include trigonometric substitution and algebraic manipulation to simplify the given integral. The integral used is common in calculus courses dealing with integration techniques.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F66c7b497-dac7-4855-b923-2e60bbc73063%2F5d11deaf-f374-443c-800f-7049a16942cc%2Fyerdidp.jpeg&w=3840&q=75)
Transcribed Image Text:### Transcription for Educational Website
#### Calculus Question: Trigonometric Substitution in Integration
We start with the integral:
\[ \int \frac{9x^2}{(81 + x^2)^2} \, dx \]
Using the substitution \[ x = 9 \, \tan \theta \], we find:
\[ dx = 9 \, \sec^2 \theta \, d\theta \]
This transforms the integral into:
\[ \int \frac{9 (9 \tan \theta)^2 \cdot 9 \sec^2 \theta \, d\theta}{(81 + (9 \tan \theta)^2)^2} \]
Simplified, it becomes:
\[ \int \frac{(9^4 \tan^2 \theta \sec^2 \theta \, d\theta)}{(9^4 (1 + \tan^2 \theta)^2)} \]
Further simplifying the expression, we get:
\[ \int \frac{\tan^2 \theta \sec^2 \theta \, d\theta}{(\sec^2 \theta)^2} \]
Note how trigonometric identities and substitutions help in transforming the integral into a more manageable form. This entire process often simplifies the integral to a standard form that can be easily evaluated.
---
Notice that the image contains hand-written steps that include trigonometric substitution and algebraic manipulation to simplify the given integral. The integral used is common in calculus courses dealing with integration techniques.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning